Advertisement

Electrical Conductivity Study of Cobalt Molybdate CoMoO4

  • A. Steinbrunn
  • M. Bindo
  • J. C. Colson
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

Electrical conductivity of Cobalt Molybdate has been measured in the temperature range 100–600°C on pressed pellets of polycristalline sample. It has been found that CoMoO4-a is a p-type semiconductor while CoMoO4-b is a n-type semiconductor.

Different conduction mechanisms have been found depending on the temperature and the oxygen partial pressure. The nature of the major defects structures is discussed for both polymorphic forms of CoMoO4.

Keywords

Oxygen Partial Pressure Oxygen Pressure Small Polaron Conduction Mode Increase Oxygen Partial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. INGRAIN, G. THOMAS, Ann. Chim. Fr., 6, 1981, pp 515–523.Google Scholar
  2. 2.
    P.S. MAMYKIN, N.A. BATRAKOV, V.H. BOGATIKOVA, Tr. Ural. Petrogr Soveshch, 7, 1975, p 45.Google Scholar
  3. 3.
    T.G. ALKHAZOV, K.YU. ADZHAMOV et A.K. KHAMNMAMEDOVA, React. Kinet. Catal-lett., 7, 1975, p 45.CrossRefGoogle Scholar
  4. 4.
    P. BOUTRY, J.C. DAUMAS, R. MONTARNAL, P. COURTINE, G. PANNETIER, Bull. Soc. Chim. Fr., 12, 1968, P 4811.Google Scholar
  5. 5.
    J. HABER, J. of less Common Metals, 36, 1974, p 277.CrossRefGoogle Scholar
  6. 6.
    J. HABER et J. ZIOLKOWSKI, Bull. Acad. Polon. Sci., Sec. Sci. Chim. 19, n°8, 1971, p 481.Google Scholar
  7. 7.
    J. HABER et J. ZIOLKOWSKI, in M.W. Roberts (Ed), Reactivity of Solids, Elsevier, Amsterdam, 1965, p 96.Google Scholar
  8. 8.
    G.W. SMITH, Nature, 188, 1960, p 306.CrossRefGoogle Scholar
  9. 9.
    G.W. SMITH, Acta, Cristallogr., 15, 1962, p 1054.CrossRefGoogle Scholar
  10. 10.
    G.W. SMITH, et J.G. IBERS, Acta Cristallogr., 19, 1965, p 269.CrossRefGoogle Scholar
  11. 11a).
    B. ARCHIROPOULOS et S.J. TEICHNER, J. Catal. 3, 1964, p 447,Google Scholar
  12. 11b).
    F. JUILLET, La Catalyse au laboratoire et dans l’industrie, 2, 1976, p 299, Editeurs Masson et Cie.Google Scholar
  13. 12.
    C. CLAUSS, R.J. TARENTO, C. MONTY, A. DOMINGUEZ-RODRIGUEZ, J. CASTAING and J. PHILIBERT, Transport in Non stoichiometric Compounds, Ed. G. Simkovich and V. Stubican, Plenum Press, 1985,255.Google Scholar
  14. 13.
    T. HOLSTEIN, Ann. Phys. (NY), 8, 1959, pp 325–343.CrossRefGoogle Scholar
  15. 14.
    J. HABER et J. ZIOLKOWSKI in Roberts (Ed.), Reactivity of Solids, Chapman et Hall London, 1972.Google Scholar
  16. 15.
    L. DZIEMBAJ et J. ZIOLKOWSKI, Bull. Acad. Polon. Sci., Sec. Sci. Chim., 20, n°7, 1972, p 725.Google Scholar
  17. 16.
    M.G. EROR et J.B. WAGNER, Phys. State Solid., 35, 1969, p 641.CrossRefGoogle Scholar
  18. 17.
    S.P. MITOFF, Chem. Phys., 35, 1979, p 882.Google Scholar
  19. 18.
    F. FAHRI, Thèse d’Etat, Paris-Nord, 1979.Google Scholar
  20. 19.
    J.E. KEEM, J.P. HONIG, L.L. VANZANDT, Phil. Mag. B., 37, n°4, 1978, pp 537–543.CrossRefGoogle Scholar
  21. 20.
    J.B. GOODENOUGH, Les Oxydes de métaux de transition, Gauthier-Villards éditeurs.Google Scholar
  22. 21.
    M. SAYER, A. MANSINGH, J.B. WEBB et J. NOAD, J. Phys. C. Solid State Phys., 11, 1978, P 315.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. Steinbrunn
    • 1
  • M. Bindo
    • 1
  • J. C. Colson
    • 1
  1. 1.Laboratoire de Recherches sur la Réactivité des SolidesFaculté des Sciences MirandeDijon CedexFrance

Personalised recommendations