The Control of Stoichiometry in Oxide Systems

  • C. B. Alcock
Part of the NATO ASI Series book series (ASIC, volume 276)


The experimental methods for the control and determination of the metal/oxygen ratio in binary metallic oxides are critically reviewed. The present limitations on classical analytical procedures as well as the newer solid state electrochemical and mass spectrometric techniques are discussed using data from systems already reported in the literature.


Oxygen Pressure Oxygen Potential Oxide Sample Coulometric Titration Barium Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L.S. Darken and R.W. Gurry, J. Amer. Chem. Soc. 67, 1398 (1945)CrossRefGoogle Scholar
  2. (2).
    K. Hagemark and M. Broli, J. Inorg. Nucl. Chem 28, 2837 (1966)CrossRefGoogle Scholar
  3. (3).
    I. Bransky and N.M. Tallan, J. Electro Chem. Soc. 118, 788 (1971)CrossRefGoogle Scholar
  4. (4).
    B. Fisher and D.S. Tannhauser, J. Chem. Phys. 44, 1663 (1966)CrossRefGoogle Scholar
  5. (5).
    W.C. Tripp and N.M. Tallan, J. Amer. Ceram. Soc. 53, 531 (1970)CrossRefGoogle Scholar
  6. (6).
    S. Zador and C.B. Alcock, J. Chem. Thermo. 2, 9 (1970)CrossRefGoogle Scholar
  7. (7).
    J. Berkowitz, M.G. Inghram and W.A. Chupka, J. Chem. Phys. 26, 842 (1957)CrossRefGoogle Scholar
  8. (8).
    C.B. Alcock, S. Zador and B.C.H. Steele, Proc. Brit. Ceram. Soc. No. 8, 231 (1967)Google Scholar
  9. (9).
    I.A. Vasil’eva, Zh. V. Granovskaya and I.S. Sukhushina, Russ. J. Phys. Chem. 48, 905 (1974)Google Scholar
  10. (10).
    M.H. Rand, and T.L. Markin, “Thermodynamics of Nuclear Materials” I.A.E.A. Vienna (1968)Google Scholar
  11. (11).
    T.L. Markin and R.J. Bones, A.E.R.E. Rep. 4042 (1962), 4178 (1962)Google Scholar
  12. (12).
    A. Nakamura and T. Fujino, J. Nucl. Mat. 149, 80 (1987)CrossRefGoogle Scholar
  13. (13).
    W. Jost, “Diffusion in Solids, Liquids, Gases” Academic Press N.Y. (1960)Google Scholar
  14. (14).
    W.L. Worrell and J.L. Iskoe, “Fast Ion Transport in Solids” ed. W. van Gool, North Holland (1973)Google Scholar
  15. (15).
    C.B. Alcock and G. Stravropoulos, Can. Met. Quart. 10, 257 (1971)Google Scholar
  16. (16).
    S.P.S. Badwal, M.J. Bannister and W.G. Garrett, “Science and Technology of Zirconia II” ed. N. Claussen, M. Ruhle and A. Heuer, Amer. Ceram Soc. (1984) p. 598Google Scholar
  17. (17).
    C.B. Alcock and J.C. Chan, Can. Met. Quart. 11, 559 (1972)Google Scholar
  18. (18).
    T.H. Etsell and S.N. Flengas, Chem. Rev. 70, 339 (1970)CrossRefGoogle Scholar
  19. (19).
    S.A. Heideman, T.B. Reed and P.W. Gilles, High Temp. Sci. 13, 79 (1980)Google Scholar
  20. (20).
    A. Neckel and S. Wagner, Berichte Bunsen 73, 210 (1969)Google Scholar
  21. (21).
    O. Kubaschewski, O. Kubaschewski von Goldbeck, P. Rogel and H.F. Franzen “Titanium” Special Issue No. 9, I.A.E.A. (1983)Google Scholar
  22. (22).
    K.L. Komarek and M. Silver “Thermodynamics of Nuclear Materials p. 749 I.A.E.A. (1962)Google Scholar
  23. (23).
    T. Takahashi, H. Iwahar and Y. Nagai, J. App. Electrochemistry 2, 97 (1972)CrossRefGoogle Scholar
  24. (24).
    C.B. Alcock, J. Butler and E. Ichise, Solid State Ionics, 314, 499 (1981)CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • C. B. Alcock
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations