Advertisement

Horizontal and Vertical Geodetic Datums

  • Ivan I. Mueller
  • Richard H. Rapp
Part of the Astrophysics and Space Science Library book series (ASSL, volume 154)

Abstract

In conventional geodetic systems, locations of points on the surface of the earth may be defined either by means of natural (astronomic) or geometric (geodetic) coordinates. The natural coordinates, the astronomic latitude (Φ), longitude (Λ), and the orthometric (mean sea level height (H), being gravity dependent, are conventionally referenced to the geoid and are determined from “natural” observations (astronomic, gravimetric and spirit leveling). The geometric coordinates, the geodetic latitude (ϕ), longitude (λ) and height (h), are referenced to a (generally) rotational ellipsoid of arbitrary size, shape and orientation, and are determined from geometric (length and/or direction) observations.

Keywords

Tide Gauge Equipotential Surface Vertical Data Reference Ellipsoid Geoid Undulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arur, M.G. and Baveja, S.D., 1984, Status of the establishment of vertical datum and the level-net in India, unpubl. manus., Survey of India, Dehradun.Google Scholar
  2. Bomford, G., 1971, ‘Geodesy,’ 3rd ed., Oxford Univ. Press, London.Google Scholar
  3. Bossler, J.D. and 23 others, 1982, AAGS Memo 2, ACSM, Falls Church, Va.Google Scholar
  4. Cartwright, D., 1985, in ‘Proc. 3rd Int. Symp. on the North American Vertical Datum,’ National Geodetic Information Center, NOAA, Rockville, Md., 155.Google Scholar
  5. Colombo, 1985, in ‘Proc. 3rd Int. Symp. on the North American Vertical Datum,’ National Geodetic Information Center, NOAA, Rockville, Md., 137.Google Scholar
  6. DMA, 1987, Dept. of Defense World Geodetic System 1984, DMA TR 8350.2, Washington, D.C.Google Scholar
  7. Ehrnsperger, W., Kok, J.J. and van Mierlo, J., 1982, Status and provisional results of the 1981 adjustment the United European Levelling Network — UELN-73, in Proc. Int.Symp. on Geodetic Networks and Computations, Deutsche Geodatische Kommission, Reihe B: No. 258/II.Google Scholar
  8. Hajela, D.P., 1985, in ‘Proc. 3rd Int. Symp. on the North American Vertical Datum,’ National Geodetic Information Center, NOAA, Rockville, Md.Google Scholar
  9. Heiskanen, W.A. and Moritz, H., 1967, ‘‘Physical geodesy,’ W.H. Freeman and Co., San Francisco and London.Google Scholar
  10. Hirvonen, R.A., 1960, ‘Annales Ac. Sci. Fennicae,’ Ser. A, III, No. 56.Google Scholar
  11. Hotine, M., 1969, ESSA Monograph 2, U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  12. Levitus, S., 1982, NOAA Professional Paper 12, NOAA Geophysical Fluid Dynamics Lab., Rockville, Md.Google Scholar
  13. Lisitzin, E., 1974, ‘Sea Level Changes,’ Elsevier Science Publ. Co., Amsterdam and N.Y.Google Scholar
  14. Makinen, J., 1987, The Fennoscandian land uplift — a case study, manus.Google Scholar
  15. Molodenskii, M.S., Eremeev, V.F. and Yurkina, M.I., 1960, ‘‘Methods for the study of the external gravitational field and the figure of the earth,’ Israel Program for Scientific Translations, Jerusalem, 1962.Google Scholar
  16. Mueller, 1969, ‘Spherical and practical astronomy as applied to geodesy,’. F. Ungar Publ., N.Y.Google Scholar
  17. Rapp, R.H., 1983, in ‘Proc. of Int. Assoc. of Geodesy Symposia, XVIII General Assembly, Hamburg,’ Dept. of Geodetic Science and Surveying, Ohio State Univ., p. 432.Google Scholar
  18. Wilkins, G.A. and Mueller, I., 1986, EOS, Trans. Am. Geophys. Union, 67, 601.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Ivan I. Mueller
    • 1
  • Richard H. Rapp
    • 1
  1. 1.Ohio State UniversityColumbusUSA

Personalised recommendations