Advertisement

Relativistic Theory of Celestial Reference Frames

  • V. A. Brumberg
  • S. M. Kopejkin
Part of the Astrophysics and Space Science Library book series (ASSL, volume 154)

Abstract

At present, the general theory of relativity (GRT) should be considered as the necessary framework for the description of the gravitational field and the construction of astronomical reference frames. In contrast with Newtonian mechanics one cannot introduce in GRT the global Galilean (inertial) coordinates. The coordinates of GRT are in general not unique and equally admissible. This results in the intrusion of coordinate-dependent, unmeasurable quantities into astronomical ephemeris. For example, in ephemeris astronomy, in order to use the well-known numerical planetary and lunar theories of motion DE-200/LE-200 referred to the barycentric coordinate time it is necessary to take into account the type of the space-time coordinates inherent to these theories.

Keywords

Reference Frame Solar System Reference System Gravitational Field Celestial Mechanics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Anderson, J.L. and Decanio, T.C., 1975, Gen. Rel. Grav., 6, 197.ADSzbMATHCrossRefGoogle Scholar
  2. Ashby, N. and Bertotti, B, 1986, Phys. Rev., D 34, 2246.Google Scholar
  3. Bertotti, B., 1986, in ‘Relativity in Celestial Mechanics and Astrometry’, J. Kovalevsky and V.A. Brumberg (eds), Reidel Publ.Co., Dordrecht, 233.Google Scholar
  4. Boucher, C., 1986, in ‘Relativity in Celestial Mechanics and Astrometry’, J. Kovalevsky and V.A. Brumberg (eds), Reidel Publ.Co., Dordrecht, 241.Google Scholar
  5. Brumberg, V.A., 1972, ‘Relativistic Celestial Mechanics’, Nauka, Moscow (in Russian).zbMATHGoogle Scholar
  6. Brumberg, V.A., 1986, in ‘Astrometric Techniques’, H.K. Eichhorn and R.J. Leacock (eds), Reidel Publ.Co., Dordrecht, 19.CrossRefGoogle Scholar
  7. Damour, T., 1983, in ‘Gravitational Radiation’, N. Deruelle and T. Piran (eds), North-Holland, Amsterdam, 59.Google Scholar
  8. Damour, T., 1987, in ‘300 Years of Gravitation’, S.W. Hawking and W. Israel (eds), Cambridge Univ. Press, 128.Google Scholar
  9. D’Eath, P.D., 1975, Phys. Rev., D 11, 1387.Google Scholar
  10. Ehlers, J., 1980, Ann. N.Y. Acad. Sci., 336, 279.ADSCrossRefGoogle Scholar
  11. Fock, V.A., 1959, ‘The Theory of Space, Time and Gravitation’, Pergamon Press, London.zbMATHGoogle Scholar
  12. Fujimoto, M.K. and Grafarend, E., 1986, in ‘Relativity in Celestial Mechanics and Astrometry’, J. Kovalevsky and V.A. Brumberg (eds), Reidel Publ.Co., Dordrecht, 269.Google Scholar
  13. Fukushima, T., Fujimoto, M.K., Kinoshita, H. and Aoki, S., 1986a, in ‘Relativity in ‘Celestial Mechanics and Astrometry’, J. Kovalevsky and V.A. Brumberg (eds), Reidel Publ.Co., Dordrecht, 145.Google Scholar
  14. Fukushima, T., Fujimoto, M.K., Kinoshita, H. and Aoki, S., 1986b, Celestial Mechanics, 38, 215.ADSCrossRefGoogle Scholar
  15. Futamase, T. and Schutz, B.F., 1983, Phys. Rev., D 28, 2363.Google Scholar
  16. Grishchuk, L.P. and Kopejkin, S.M., 1986, in ‘Relativity in Celestial Mechanics and Astrometry’, J. Kovalevsky and V.A. Brumberg (eds), Reidel Publ.Co., Dordrecht, 19.Google Scholar
  17. Guinot, B., 1986, Celestial Mechanics, 38, 155.ADSCrossRefGoogle Scholar
  18. Hellings, R.W., 1986, Astron. J., 91, 650.ADSCrossRefGoogle Scholar
  19. Japanese Ephemeris, 1985, Basis of the New Japanese Ephemeris, Tokyo.Google Scholar
  20. Kates, R.E., 1981, Ann. Phys., USA, 132, 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. Kopejkin, S.M., 1985, Astron. J. USSR, 62, 889 (in Russian).ADSGoogle Scholar
  22. Kopejkin, S.M., 1987, Trans. Sternberg State Astron. Inst, 59, 53 (in Russian).ADSGoogle Scholar
  23. Kovalevsky, J. and Mueller, 1981, in ‘Reference Coordinate Systems for Earth Dynamics’, E.M. Gaposchkin and B. Kolaczek (eds), Reidel Publ.Co., Dordrecht, 375.Google Scholar
  24. Kovalevsky, J., 1985, Bull. Astron. Obs. Roy. Belgique, 10, 87.Google Scholar
  25. Lestrade, J.F. and Chapront-Touzé, M., 1982, Astron. Astrophys., 116, 75.ADSzbMATHGoogle Scholar
  26. Martin, C.F., Torrence M.H. and Misner, C.W., 1985, J. Geophys. Research, 90, 9403.ADSCrossRefGoogle Scholar
  27. Mast, C.B. and Strathdee, J., 1959, Proc. Roy. Soc., A 252, 476.MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. Misner, C.W., Thorne, K.S. and Wheeler, J.A., 1973, ‘Gravitation’, Freeman, San Francisco.Google Scholar
  29. Moeller, C., 1972, ‘The Theory of Relativity’, Clarendon Press, Oxford.Google Scholar
  30. Mueller, I.I., 1981, in ‘Reference Coordinate Systems for Earth Dynamics’, E.M. Gaposchkin and B. Kolaczek (eds), Reidel Publ.Co., Dordrecht, 1.Google Scholar
  31. Murray, C.A., 1983, ‘Vectorial Astrometry’, Adam Hilger, Bristol.Google Scholar
  32. Ni, W.T. and Zimmermann, M., 1978, Phys. Rev., D 17, 1473.ADSGoogle Scholar
  33. Pavlov, N.V., 1984a, Astron. J., USSR, 61, 385 (in Russian).ADSGoogle Scholar
  34. Pavlov, N.W., 1984b, Astron. J., USSR, 61, 600 (in Russian).ADSGoogle Scholar
  35. Podobed, V.V. and Nesterov, V.V., 1982, ‘General Astrometry’, Nauka, Moscow (in Russian).Google Scholar
  36. Suen, W.M., 1986, Phys. Rev., D 34, 3617.MathSciNetADSGoogle Scholar
  37. Synge, J.L., 1960, ‘Relativity: The General Theory’, North-Holland.Publ.Co.zbMATHGoogle Scholar
  38. Thome, K.S. and Hartle, J.B., 1985, Phys. Rev., D 31, 1815.Google Scholar
  39. Zhang, X.H., 1986, Phys. Rev., D 34, 991.MathSciNetADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • V. A. Brumberg
    • 1
  • S. M. Kopejkin
    • 2
  1. 1.Institute of Applied AstronomyLeningradRussia
  2. 2.Sternberg State Astronomical InstituteMoscowRussia

Personalised recommendations