Advertisement

The Preparation and Thermal Rearrangement of Functionalized 6-(1-Alkenyl)Bicyclo[3.1.0]Hex-2-Enes. Applications to synthesis

  • Edward Piers
Part of the NATO ASI Series book series (ASIC, volume 273)

Abstract

In connection with developing methods that would be applicable to the total synthesis of natural products such as sinularene (6), prezizaene (7), and quadrone (8), the thermolytic rearrangements of a number of substituted 6-(l-alkenyl)bicyclo[3.1.0]hex-2-enes were investigated. Upon thermolysis, compounds 9, 12, 36, 38, 42, 44, and 58 underwent clean [3,3]-sigmatropic (Cope) rearrangement to provide excellent yields of the functionalized bicyclo[3.2.1]octa-2,6-dienes 10, 15, 37, 30, 43, 45, and 59, respectively. In contrast, substances 29, 46, and 55 proved to be very poor substrates for Cope rearrangement. Thus, heating of these materials gave low yields or none of the corresponding Cope rearrangement products 30, 47, and 56, respectively.

Keywords

Total Synthesis Allylic Alcohol Thermal Rearrangement Proton Nuclear Magnetic Resonance Spectroscopy Ethyl Diazoacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. Cupas, W.E. Watts, and P. von R. Schleyer, Tetrahedron Lett. 2503 (1964).Google Scholar
  2. 2.
    J.M. Brown, Chem. Commun. 226 (1965).Google Scholar
  3. 3.
    S.J. Rhoads and N.R. Raulins, Org. React. 22, 1 (1975).Google Scholar
  4. 4.
    E.M. Mil’vitskaya, A.V. Tarakanova, and A.V. Plate, Russ. Chem. Rev. 45, 469 (1976).CrossRefGoogle Scholar
  5. 5.
    J.J. Gajewski, Hydrocarbon Thermal Isomerizations. Academic Press, Inc., New York, NY, 1981, pp. 215–216, 258-260.Google Scholar
  6. 6.
    J.E. Baldwin and K.E. Gilbert, J. Am. Chem. Soc. 98, 8283 (1976).CrossRefGoogle Scholar
  7. 7.
    C.M. Beechan, C. Djerassi, J.S. Finer, and J. Clardy, Tetrahedron Lett. 2395 (1977).Google Scholar
  8. 8.
    E. Piers, G.L. Jung, and E.H. Ruediger, Can. J. Chem. 65, 670 (1987).CrossRefGoogle Scholar
  9. 9.
    E. Piers and G.L. Jung, Can. J. Chem. 65, 1668 (1987).CrossRefGoogle Scholar
  10. 10.
    C.W. Spangler, Chem. Rev. 76, 187 (1976).CrossRefGoogle Scholar
  11. 11.
    R.J. Ellis and H.M. Frey, J. Chem. Soc. 5578 (1964).Google Scholar
  12. 12.
    W. Pickenhagen, F. Naf, G. Ohloff, P. Muller, and J.-C. Perlberger, Helv. Chim. Acta. 56, 1868 (1973).CrossRefGoogle Scholar
  13. 13.
    Y. Ito, T. Hirao, and T. Saegusa, J. Org. Chem. 43, 1011 (1978).CrossRefGoogle Scholar
  14. 14.
    P.J. Carrol, E.L. Ghisalberti, and D.E. Ralph, Phytochemistry. 15, 777 (1976).CrossRefGoogle Scholar
  15. 15.
    E. Piers and P.S. Marrs, Unpublished work.Google Scholar
  16. 16.
    D. Seyferth, R.L. Lambert, Jr., and M. Massol, J. Organomet. Chem. 88, 255 (1975).CrossRefGoogle Scholar
  17. 17.
    E. Piers, M. Jean, and P.S. Marrs, Tetrahedron Lett. 28, 5075 (1987).CrossRefGoogle Scholar
  18. 18.
    P.K. Freeman and L.L. Hutchinson, J. Org. Chem. 48, 4705 (1983).CrossRefGoogle Scholar
  19. 19.
    R.L. Ranieri and G.J. Calton, Tetrahedron Lett. 499 (1978); G.J. Calton, R.L. Ranieri, and M.A. Espenshade, J. Antibiot. 31, 38 (1978); K. Kon, K. Ito, and S. Isoe, Tetrahedron Lett. 25, 3739 (1984).Google Scholar
  20. 20.
    E. Piers, G.L. Jung, and N. Moss, Tetrahedron Lett. 25, 3959 (1984).CrossRefGoogle Scholar
  21. 21.
    E. Piers and N. Moss, Unpublished work.Google Scholar
  22. 22.
    S. Burke, C.W. Murtiashaw, J.O. Saunders, J.A. Oplinger, and M.S. Dike, J. Am. Chem. Soc. 106, 4558 (1984).CrossRefGoogle Scholar
  23. 23.
    E. Piers and N. Moss, Tetrahedron Lett. 26, 2735 (1985).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Edward Piers
    • 1
  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations