Advertisement

On the Relationship between Strain and Chemical Reactivity of Torsionally Distorted Carbon-Carbon Double Bonds

  • Kenneth J. Shea
Part of the NATO ASI Series book series (ASIC, volume 273)

Abstract

In an effort to develop relationships between the strain of a carbon-carbon double bond and its chemical reactivity, a series of bridgehead alkenes containing torsionally distorted bridgehead double bonds have been synthesized. A combination of computational, spectroscopic and structural studies have provided information regarding the manner and degree of strain in these molecules. In addition, the rates of expoxidation of these double bonds have been obtained. The relationship between strain energy, reaction exothermicity and other spectroscopic parameters to the rate of epoxidation are examined in an effort to identify the chemical manifestations of strain.

Keywords

Double Bond Chemical Reactivity Spectroscopic Parameter Torsionally Distort SIGMATROPIC Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    Sterling, C. J. M. Tetrahedron, 1985,47, 1613.CrossRefGoogle Scholar
  2. 1. (b)
    Sterling, C. J. M. Pure and Appl. Chem., 1984, 56, 1781.CrossRefGoogle Scholar
  3. 2.
    Rogers, D. W.; Voitkengerg, H.; Allinger, N. L. J. Org. Chem., 1978,45, 360.CrossRefGoogle Scholar
  4. 3.
    Lesko, P. M.; Turner, R. B. J. Am. Chem. Soc., 1968, 90, 6888.CrossRefGoogle Scholar
  5. 4. (a)
    Ermer, O.; Lifson, S. J. Am. Chem. Soc., 1973, 95, 4121.CrossRefGoogle Scholar
  6. 4. (b.)
    Allinger, N. L.; Sprague, J. T. J. Am. Chem. Soc., 1972,94, 5734.CrossRefGoogle Scholar
  7. 4. (c)
    Ermer, O. A spekte von Kraftfeldrechnungen, W. B. Verlag: Munich, 1981.Google Scholar
  8. 5.
    Shea, K. J. Tetrahedron, 1980, 36, 1683.CrossRefGoogle Scholar
  9. 6.
    Shea, K. J.; Wise, S. J. Am. Chem. Soc., 1978,100, 6519.CrossRefGoogle Scholar
  10. 7.
    Shea, K. J.; Wise, S. Tetrahedron Lett., 1979, 1011.Google Scholar
  11. 8.
    Shea, K. J.; Beauchamp, P. D.; Lind, R. J. Am. Chem. Soc., 1980,102, 4544.CrossRefGoogle Scholar
  12. 9.
    Shea, K. J.; Wise, S.; Burke, L. D.; Davis, P. D.; Gilman, J. W.; Greeley, A. C. J. Am. Chem. Soc., 1982,104, 5708.CrossRefGoogle Scholar
  13. 10.
    Shea, K. J.; Greeley, A. C.; Nguyen, S.; Beauchamp, P. D.; Wise, S. Tetrahedron Lett., 1983, 24, 4173.CrossRefGoogle Scholar
  14. 11.
    Shea, K. J.; Greeley, A. C.; Nguyen, S.; Beauchamp, P. D.; Aue, D. H.; Witzeman, J. S. J. Am. Chem. Soc., 1986,705, 5901.CrossRefGoogle Scholar
  15. 12.
    Burkert, V.; Allinger, N. L. Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington, DC, 1982.Google Scholar
  16. 13.
    Maier, W. F.; Schleyer, P. v. R. J. Am. Chem. Soc., 1981,103, 1891.CrossRefGoogle Scholar
  17. 14.
    McEwen, A. B.; Schleyer, P. v. R. J. Am. Chem. Soc., 1986,108, 3951.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Kenneth J. Shea
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations