Time-dependent autohesion

  • R. G. Stacer
  • H. L. Schreuder-Stacer

Abstract

A study has been conducted to investigate the relationship between polymeric structure and time-dependent autohesion, measured in terms of autohesive fracture energy, G a. Using the method of reduced variables, it was found that G a data as a function of contact time and temperature could be superposed into master curves of temperature-reduced contact times. Autohesion master curves developed in this fashion showed fracture resistance increasing with time along a logarithmic-type curve with monotonically decreasing slope. These data indicate that the generally accepted 1/2 power law dependency for autohesion only applies over a narrow range of contact times. Modelling of the experimental results was accomplished using a first-order kinetic equation derived to account for contact-area formation. Two diffusion-based models also provided good predictions in specific cases, most notably for the effect of molecular weight on time to equilibrium. However, evidence that diffusion is not the rate controlling process included the pronounced effects of contact pressure on autohesion and the identical time- dependent behavior of nondiffusing crosslinked networks when compared with systems containing mobile polymeric chains.

Keywords

Contact Time Contact Pressure Fracture Energy Fracture Resistance Peel Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On a mené une étude sur la relation liant la structure d’un polymere et de l’auto-adhésion dépendant du temps, mesurée en termes de l’énergie de rupture d’auto-adhésion Ga. En utilisant la méthode des réduites, on trouve que les donées relatives à Ga exprimées en fonction de la durée du contact et de la température, peuvent être superposées à des courbes directrices liant la température et les durées de contact réduites. Les courbes directrices d’auto-adhésion développées par cette voie montrent que la résistance à la rupture augmente avec le temps selon loi de type logarithmique, avec une pente à décroissance régulière. Ces données indiquent que la loi de puissance 1/2 qui est généralement acceptée pour l’auto-adhésion ne s’applique que sur une plage de durées de contact relativement étroite. Pour tenir compte de la formation de surfaces de contact, on a accompli une modélisation des données expérimentales en utilisant une équation cinétique du premier ordre. Deux modèles basés sur la diffusion fournissent également de bonne prédictions pour des cas spécifiques, et plus particulièrement pour traiter le problème de l’effet du poids moléculaire sur la durée pour atteindre un équilibre. Toutefois, il est évident que la diffusion n’est pas le processus contrôlant la vitesse. Ceci transparaît par les effets prononcés de la pression de contact sur l’auto-adhésion, et sur le comportement identique par rapport au temps de réseaux à liaison crousées non sujets à la diffusion et de systèmes comportant des chaînes polymères multiples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.S. Voyutskii, Autohesion and Adhesion of High Polymers, Interscience, New York (1963).Google Scholar
  2. 2.
    G.R. Hamed, Rubber Chemistry and Technology 54 (1981) 576–595.CrossRefGoogle Scholar
  3. 3.
    S. Wu, Polymer Interface and Adhesion, Dekker, New York (1982).Google Scholar
  4. 4.
    S.S. Voyutskii and B.V. Shtarkh, Rubber Chemistry and Technology 30 (1957) 548–553.CrossRefGoogle Scholar
  5. 5.
    W.G. Forbes and L.A. McLeod, Transactions of the Institute of the Rubber Industry 34 (1958) 154–184.Google Scholar
  6. 6.
    K. Jud, H.H. Kausch and J.G. Williams, Journal of Material Science 16 (1981) 204–214.ADSCrossRefGoogle Scholar
  7. 7.
    R.P. Wool and K.M. O’Connor, Journal of Applied Physics 52 (1981) 5953–5963.ADSCrossRefGoogle Scholar
  8. 8.
    R.P. Wool and K.M. O’Connor, Journal of Polymer Science: Polymer Letters Edition 20 (1982) 7–16.ADSCrossRefGoogle Scholar
  9. 9.
    T.Q. Nguyen, H.H. Kausch, H. Jud and M. Dettenmaier, Polymer 23 (1982) 1305–1321.CrossRefGoogle Scholar
  10. 10.
    R.P. Wool, Rubber Chemistry and Technology 57 (1984) 307–319.CrossRefGoogle Scholar
  11. 11.
    H.H. Kausch, D. Petrovska, R.F. Landel and L. Monnerie, Polymer Science and Engineering 27 (1987) 149–154.CrossRefGoogle Scholar
  12. 12.
    S.S. Voyutskii, Rubber Chemistry and Technology 33 (1960) 748–755.CrossRefGoogle Scholar
  13. 13.
    S.S. Voyutskii and V.L. Vakula, Journal of Applied Polymer Science 1 (1963) 475–491.CrossRefGoogle Scholar
  14. 14.
    P.G. de Gennes, Comptes Readu Academy of Sciences (Paris), Series B, 291 (1980) 219–223.Google Scholar
  15. 15.
    P.G. de Gennes, Journal of Chemical Physics 55 (1971) 572–579.ADSCrossRefGoogle Scholar
  16. 16.
    S. Prager and M. Tirrell, Journal of Chemical Physics 75 (1981) 5194–5198.ADSCrossRefGoogle Scholar
  17. 17.
    S. Prager, D. Adolf and M. Tirrell, Journal of Chemical Physics 78 (1983) 7015–7016.ADSCrossRefGoogle Scholar
  18. 18.
    D. Adolf, M. Tirrell and S. Prager, Journal of Polymer Science: Polymer Physics Edition 23 (1985) 413–427.ADSCrossRefGoogle Scholar
  19. 19.
    Y.H. Kim and R.P. Wool, Macromolecules 16 (1983) 1115–1120.ADSCrossRefGoogle Scholar
  20. 20.
    F.N. Kelley, PhD dissertation, University of Akron (1961).Google Scholar
  21. 21.
    D.H. Kaelble, in Treatise on Adhesion and Adhesives, R.L. Patrick (ed.), Dekker, New York (1967).Google Scholar
  22. 22.
    D.H. Kaelble, Journal of Adhesion 1 (1969) 102–123.CrossRefGoogle Scholar
  23. 23.
    D.H. Kaeble, Journal of Macromolecular Science — Reviews in Macromolecular Chemistry C6 (1971) 85–112.Google Scholar
  24. 24.
    J.N. Anand, Journal of Adhesion 5 (1973) 265–275.CrossRefGoogle Scholar
  25. 25.
    G.R. Hamed, Rubber Chemistry and Technology 54 (1981) 403–414.CrossRefGoogle Scholar
  26. 26.
    G.R. Hamed, Rubber Chemistry and Technology 55 (1982) 1469–1481.CrossRefGoogle Scholar
  27. 27.
    N.S. Korenevskaya, V.V. Laurent’ev, S.M. Yagnyatinskaya, V.G. Rayevskii and S.S. Voyutskii, Polymer Science USSR 8 (1966) 1372–1377.CrossRefGoogle Scholar
  28. 28.
    J.D. Ferry, Viscoelastic Properties of Polymers, Third Edition, Wiley, New York (1980).Google Scholar
  29. 29.
    R.W. Fillers and N.M. Tschoegl, Transactions of the Society of Rheology 21 (1977) 51–100.CrossRefGoogle Scholar
  30. 30.
    W.K. Moonan and N.W. Tschoegl, Macromolecules 16 (1983) 55–59.ADSCrossRefGoogle Scholar
  31. 31.
    W.K. Moonan and N.W. Tschoegl, Journal of Polymer Science: Polymer Physics Edition 23 (1985) 623–651.ADSCrossRefGoogle Scholar
  32. 32.
    E.A. Meinecke, Rubber Chemistry and Technology 53 (1980) 1145–1159.CrossRefGoogle Scholar
  33. 33.
    R.S. Rivlin and A.G. Thomas, Journal of Polymer Science 10 (1953) 291–318.ADSCrossRefGoogle Scholar
  34. 34.
    A.N. Gent and A.J. Kinloch, Journal of Polymer Science: Polymer Physics Edition 9 (1971) 659–668.ADSGoogle Scholar
  35. 35.
    A.N. Gent, Rubber Chemistry and Technology 47 (1974) 202–212.CrossRefGoogle Scholar
  36. 36.
    E.H. Andrews and A.J. Kinloch, Proceedings of the Royal Society London A332 (1973) 385–399.ADSCrossRefGoogle Scholar
  37. 37.
    E.H. Andrews and A.J. Kinloch, Proceedings of the Royal Society London A332 (1973) 401–414.ADSCrossRefGoogle Scholar
  38. 38.
    R.G. Stacer, D.M. Husband, and H.L. Stacer, Rubber Chemistry and Technology 60 (1987) 227–244.CrossRefGoogle Scholar
  39. 39.
    M.L. Williams, R.F. Landel and J.D. Ferry, Journal of the American Chemical Society 11 (1955) 3701–3706.CrossRefGoogle Scholar
  40. 40.
    P.J. Flory, Statistical Mechanics of Chain Molecules, Wiley, New York (1969).Google Scholar
  41. 41.
    M. Tirrell, Rubber Chemistry and Technology 57 (1984) 523–556.CrossRefGoogle Scholar
  42. 42.
    D.S. Pearson, Rubber Chemistry and Technology 60 (1987) 439–496.CrossRefGoogle Scholar
  43. 43.
    L.F. Plisko, V.V. Laurentyev, V.L. Vakula, and S.S. Voyutskii, Polymer Science USSR 14 (1972) 2501–2506.CrossRefGoogle Scholar
  44. 44.
    R.M. Vasenin, Adhesives Age 8 (1965) 18–29.Google Scholar
  45. 45.
    J.N. Anand and R.Z. Balwinski, Journal of Adhesion 1 (1969) 24–30.CrossRefGoogle Scholar
  46. 46.
    J.N. Anand and L. Dipsinski, Journal of Adhesion 2 (1970) 16–22.CrossRefGoogle Scholar
  47. 47.
    R.P. Campion, Journal of Adhesion 1 (1974) 1–23.Google Scholar
  48. 48.
    A.Ya. Malkin, in Experimental Methods of Polymer Physics, A.Ya. Malkin (ed.), Prentice-Hall, Englewood Cliffs, New Jersey (1983).Google Scholar
  49. 49.
    F. Bueche, Physical Properties of Polymer, Wiley, New York (1962).Google Scholar

Copyright information

© Kluwer Academic Publishers, Dordrecht 1989

Authors and Affiliations

  • R. G. Stacer
    • 1
  • H. L. Schreuder-Stacer
    • 1
  1. 1.Air Force Systems CommandAir Force Astronautics LaboratoryEdwards AFBUSA

Personalised recommendations