Photosuicide Labelling

  • L. Ehret-Sabatier
  • B. Kieffer
  • M. P. Goeldner
  • C. G. Hirth
Part of the NATO ASI Series book series (ASIC, volume 272)

Abstract

The photochemical properties of aryldiazonium salts and 4-diazocyclohexa-2,5-dienones are described with regards to their use as photoaffinity probes of biological receptors. The high reactivity of the photogenerated species, the corresponding aryl cation and the cyclohexadienonylidene carbene are emphasized. The short lifetime of the photogenerated intermediate is an important factor for the specificity of alkylation at the target binding site during the photoaffinity labelling process. We designed the photosuicide concept (suicide inactivation using photolabile probes) to increase this specificity of labelling by selective photoactivation of the ligand molecule that is complexed at the binding site. Descriptions of three selective photoactivations are given, each induced by different physico-chemical properties of a receptor site. The use of the above mentionned highly reactive species in photosuicide labelling experiments opens diffent possibilities including the topographical mapping of a receptor site.

Keywords

Diazonium Salt Photochemical Property Photoaffinity Labelling Target Binding Site Aryldiazonium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    MP. Goeldner, C.G. Hirth, B. Kieffer and G. Ourisson (1982) Trends Biochem. Sci. 7, 310–312.CrossRefGoogle Scholar
  2. (2).
    H. Bayley (1983) Photogenerated Reagents in Biochemistry and Molecular Biology in Laboratory Techniques inBiochemistry and Molecular Biology, Elsevier Amsterdam.Google Scholar
  3. (3).
    K. Bloch (1969) Acc.Chem. Res. 2,193–202.CrossRefGoogle Scholar
  4. (4).
    P. Kessler and L. Ehret-Sabatier unpublishedGoogle Scholar
  5. (5).
    D.M.A. Grieve, G.E. Lewis, M.D. Ravenscroft, P. Skrabal, T. Sonoda, I.Szele and H. Zollinger (1985)Helv. Chim. Acta 68,1427–1443.CrossRefGoogle Scholar
  6. (6).
    A.Cox,T.J. Kemp, D.R. Payne, M.C.R. Symons and P. Pino de Moira (1978) J. Am.Chem. Soc. 100,4779–4783.CrossRefGoogle Scholar
  7. (7).
    H.B. Ambroz and T.J. Kemp (1982)J.Chem. Soc.,Chem. Commun.172–173.Google Scholar
  8. (8).
    B. Kieffer, M.P. Goeldner and C.G. Hirth (1981) J.Chem. Soc.,Chem. Commun. 398–399.Google Scholar
  9. (9).
    J.L. Galzi (1987) These de l’Universite Louis Pasteur Strasbourg, France.Google Scholar
  10. (10).
    H.B. Ambroz and T.J. Kemp (1979) Chem. Soc. Rev. 8,353–365.CrossRefGoogle Scholar
  11. (11).
    R.W. Stumpe (1980)Tetrahedron Lett. 21,4891–4892.CrossRefGoogle Scholar
  12. (12).
    R. Huisgen and W.D. Zahler (1963)Chem. Ber. 96,736–746.CrossRefGoogle Scholar
  13. (13).
    M. Speranza (1980)Tetrahedron Lett. 21,1983–1986.CrossRefGoogle Scholar
  14. (14).
    G. Angelini, S. Fornarini and M. Speranza (1982)J. Am.Chem. Soc 104, 4473–4480.Google Scholar
  15. (15).
    G. Angelini, C. Sparapani and M. Speranza (1984)Tetrahedron 40,4865–4871.CrossRefGoogle Scholar
  16. (16).
    Y. Keheyan and M. Speranza (1985)Helv. Chim. Acta 68, 2381–2388.CrossRefGoogle Scholar
  17. (17).
    M. Colosimo, M. Speranza, F. Cacace and G. Ciranni (1984)Tetrahedron40, 4873–4883.CrossRefGoogle Scholar
  18. (18).
    B. Kieffer, M.P. Goeldner, C.G. Hirth, R. Aebersold andJ.-Y. Chang (1986) FEBS Lett. 202,91–96.CrossRefGoogle Scholar
  19. (19).
    R.M. Izatt,J.D. Lamb, B.E. Rossiter, N.E. Izatt andJ.J. Christensen (1978) J.Chem. Soc.,Chem. Commun. 386–387.Google Scholar
  20. (20).
    J.P. Behr and C.G. Hirth unpublished.Google Scholar
  21. (21).
    M.J. Bouchet, A. Rendon, C.G. Wermuth, M.P. Goeldner and C.G. Hirth (1987)J. Med.Chem. 30, 2222–2227.PubMedCrossRefGoogle Scholar
  22. (22).
    H. Dürr (1975) Photochemie in Methoden der Organischen Chemie, Houben-Weyl, (E. Müller Ed.) Bd. IV/5b teil II, pp.1210–1237, Georg Thieme Verlag StuttgartGoogle Scholar
  23. (23).
    E. Wasserman (1964)J. Am.Chem. Soc. 84,4203–4204.CrossRefGoogle Scholar
  24. (24).
    M.L. Kaplan and H.D. Roth (1972) J.Chem. Soc.,Chem. Commun.970–971.Google Scholar
  25. (25).
    H. Dürr and H. Kober (1972) Tetrahedron lett. 1259–1262.Google Scholar
  26. (26).
    O. Süs, K. Möller and H. Heiss (1956) Ann. 598, 123–138.Google Scholar
  27. (27).
    W.H. Pirkle and G.F. Koser (1968)Tetrahedron lett. 3959–3962.Google Scholar
  28. (28).
    J.C. Fleming and H. Shechter (1969)J. Org.Chem. 34, 3962–3969.CrossRefGoogle Scholar
  29. (29).
    G.F. Koser and W.H. Pirkle (1967)J. Org.Chem. 32, 1992–1994.CrossRefGoogle Scholar
  30. (30).
    L. Ehret-Sabatier unpublishedGoogle Scholar
  31. (31).
    L. Ehret-Sabatier unpublishedGoogle Scholar
  32. (32).
    J.P. Changeux, T.R. Podleski and L. Wofsy (1967) Proc. Natl. Acad. Sci.USA, 58 2063–2070PubMedCrossRefGoogle Scholar
  33. (33).
    P. Eid, M.P. Goeldner, C.G. Hirth and P. Jost (1981)Biochemistry 20, 2256–2260.CrossRefGoogle Scholar
  34. (34).
    W.P. Jencks (1975), Advances in Enzymology, (Meister, A. Ed.) Vol.43 pp.219–410. John Wiley & sons Ltd., New-York.Google Scholar
  35. (35).
    Y.L. Chow (1973) Acc.Chem. Res. 6, 354–360.CrossRefGoogle Scholar
  36. (36).
    M.P. Goeldner and C.G. Hirth (1980) Proc. Natl. Acad. Sci. USA 77, 6439–6442.PubMedCrossRefGoogle Scholar
  37. (37).
    N.K. Schaffer, H.O. Michel and A.F. Bridge (1973) Biochemistry 12, 2946–2950.PubMedCrossRefGoogle Scholar
  38. (38).
    K. MacPhee-Quigley,P. Taylor and S. Taylor (1985)J. Biol.Chem. 260, 12185–12189.PubMedGoogle Scholar
  39. (39).
    O. Lockridge (1984) in: Cholinesterases, Fundamental and Applied Aspects (Brzin, M. et al. eds.) pp5–11De Gruyter, BerlinGoogle Scholar
  40. (40).
    M. Schumacher, S. Camp, Y. Maulet, M. Newton, K MacPhee-Quigley, S. Taylor, T. Friedmann and P. Taylor (1986) Nature 319,407–409.PubMedCrossRefGoogle Scholar
  41. (41).
    J. Langenbuch-Cachat, C. Bon, C. Mulle, M. Goeldner, C. Hirth andJ.P. Changeux (1988) Biochemistry 27, 2237–2245.CrossRefGoogle Scholar
  42. (42).
    M.P. Goeldner, C.G. Hirth, B. Rossi, G. Ponzio and M. Lazdunski (1983) Biochemistry 22,4685–4690.PubMedCrossRefGoogle Scholar
  43. (43).
    T.B. Rodgers and M. Lazdunski (1979) Biochemistry 18,135–140.CrossRefGoogle Scholar
  44. (44).
    J.L. Galzi, A. Mejean, B. Illien, M. Goeldner and C. Hirth submittedGoogle Scholar
  45. (45).
    J.C. Scaiano and NGuyen Kim-Thuan (1983)J. Photochem. 23, 269–276.CrossRefGoogle Scholar
  46. (46).
    M.D. Ravenscroft and H. Zollinger (1988) Helv. Chim. Acta 71, 507–514, and references cited therein.CrossRefGoogle Scholar
  47. (47).
    M. Dennis,J. Giraudat, F. Kotzyba-Hibert, M. Goeldner, C. Hirth,J.Y. Chang, C. Lazure, M. Chretien andJ.P. Changeux (1988) 27, 2346-2357.Google Scholar
  48. (48).
    P.R. Schofield, M.G. Darlison, N. Fujita, D.R. Burt, F.A. Stephenson, H. Rodriguez, L.M. Rhee,J. Ramachandran, V. Reale, T.A. Glencorse, P.H. Seeburg and E.A. Barnaid (1987) Nature 328,221–227.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • L. Ehret-Sabatier
    • 1
  • B. Kieffer
    • 1
  • M. P. Goeldner
    • 1
  • C. G. Hirth
    • 1
  1. 1.Laboratoire de Chimie Bio-organique UA CNRS 31Universite Louis Pasteur StrasbourgIllkirch-GraffenstadenFrance

Personalised recommendations