Advertisement

Photochemistry of Aryl and Aroyl Azides: Application to Photolabeling of Biological Systems

  • Gary B. Schuster
Part of the NATO ASI Series book series (ASIC, volume 272)

Abstract

The major objective of this work is to provide the knowledge necessary for the sound application and interpretation of photolabeling experiments. A major goal in the study of living systems is to associate function with chemical structure. Several experimental approaches have been developed to facilitate this goal. Among the most useful of these are photolabeling procedures. In this approach, an activatable reagent is positioned adjacent to a target structure. The latent reactivity of the reagent is revealed by irradiation with light and the intermediate so formed binds irreversible to some functional group at the site. Later, the biological structure is degraded and the labeled site identified. The aim of the work described herein is the definition and characterization of the chemical and physical properties of the high-reactivity intermediate. We detect these intermediates by time-resolved laser spectroscopy. The main focus of our effort has been aroyl and axyl nitrenes. Their properties are described herein and recommendations for their use in photolabeling experiments are made.

Keywords

Global Reactivity Photoaffinity Label Aryl Azide Phenyl Azide Triplet Sensitization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. (1).
    Potter, R. L. and Haley, B. E. In Methods in Enzymology, Vol. 91, C. H. W. Hirs and S. N. Timasheff, Eds. Academic: New York, 1983.Google Scholar
  2. (2).
    Barden, R. E.; Achenjang, F. M.; Adams, C. M. In Methods in Enzymoloty, Vol. 91, C. H. W. Hirs and S. N. Timasheff, Eds. Academic: New York, 1983.Google Scholar
  3. (3).
    Bayley, H. in Membranes and Transport, Vol. 1, A. Martinosi, Ed., Plenum: New York, 1982.Google Scholar
  4. (4).
    Tometsko, A. M.; Richards, F. M. ‘Applications of Photochemistry in Probing Biological Targets,’ Ann. N. Y. Acad. Sci. 1980, 346.Google Scholar
  5. (5).
    Ji, T. H., Methods Enzymol., 1983, 46, 580.CrossRefGoogle Scholar
  6. (6).
    Brunner, J., Trends Biochem. Sci. 1981, 6, 44.CrossRefGoogle Scholar
  7. (7).
    Staros, J. U.; Richards, F. M.; Haley, B. E. Biol. Chem. 1975, 250, 8174.Google Scholar
  8. (8).
    Singh, A.; Thornton, E. R.; Westheimer, F. H. J. Biol Chem. 1962,237, PC3006.Google Scholar
  9. (9).
    Based on a survey of Chemical Abstracts Online.Google Scholar
  10. (10).
    Brunner, J.; Spiess, M.; Aggeier, R.; Huber, P.; Semenza, G. Biochemistry 1983, 22, 3812.PubMedCrossRefGoogle Scholar
  11. (11).
    Aimoto, S.; Richards, F. M. Biol. Chem. 1981, 256, 5134.Google Scholar
  12. (12).
    Johnson, G. L.; Vincent, I. M.; Pilch, P. F. Proc. Natl. Acad Sci. USA 1981, 78, 875.PubMedCrossRefGoogle Scholar
  13. (13).
    Fleet, G. W. J.; Porter, R. R.; Knowles, J. R. Nature 1969, 224, 511.CrossRefGoogle Scholar
  14. (14).
    Knowles, J. R. Acc. Chem. Res. 1972, 3, 155.CrossRefGoogle Scholar
  15. (15).
    Azides and Nitrenes, Scriven, E. F. V. Ed. Academic: New York, 1984.Google Scholar
  16. (16).
    Bayley, H.; Knowles, J. R. Methods Enzymol. 1977, 46, 69.PubMedCrossRefGoogle Scholar
  17. (17a).
    Schrock, A. K.; Schuster, G. B. J. Am. Che. Soc. 1984, 106, 5228CrossRefGoogle Scholar
  18. (17b).
    Schrock, A. K.; Schuster, G. B. J. Am. Chem. Soc. 1984, 106, 5234.CrossRefGoogle Scholar
  19. (18).
    Nielsen, P. E.; Buchardt, O. Photochem. Photobiol. 1982, 35, 317.CrossRefGoogle Scholar
  20. (19).
    Horner, L.; Christman, A. Chem. Ber. 1963, 96, 399. DeGraff, B. A.; Gillespie, D. W.; Sundberg, R. J. J. Am. Chem. Soc. 1974, 69, 7491.Google Scholar
  21. (20).
    Waddel, W. H.; Go, C. L. J. Org. Chem. 1983, 48, 2897.CrossRefGoogle Scholar
  22. (21).
    Doering, W. E.; Odum, R. A. Tetrahedron, 1966, 22, 81.CrossRefGoogle Scholar
  23. (22).
    Huisgen, R.; Vossius, D.; Appl, M. Chem. Ber. 1985, 91, 1.CrossRefGoogle Scholar
  24. (23).
    Chapman, O. L.; LeRoux, J.-P. Am. Chem.Soc. 1978, 100, 282.CrossRefGoogle Scholar
  25. (24).
    Bercovici, T.; Gitler, C. Biochemistry 1981, 20, 6872.CrossRefGoogle Scholar
  26. (25).
    Wasserman, E., Prog. Phys. Org. Chem. 1971, 8, 319.CrossRefGoogle Scholar
  27. (26).
    Dunkin, I. R.; Thompson, P. C. P. J. Chem. Soc. Chem. Commun. 1980, 499.Google Scholar
  28. (27).
    Carde, R. N.; Jones, G. J. Chem. Soc. Perkin I, 1975, 519.Google Scholar
  29. (29).
    Collins, S.; Marietta, M. A. Molecular Pharm. 1984, 26, 353.Google Scholar
  30. (29).
    Wolf, M. K.; Konisky, J. J. Bacteriol 1981, 145, 341.PubMedGoogle Scholar
  31. (30).
    We were able to obtain EPR spectra that obeyed the Curie law at 1.2 K.Google Scholar
  32. (31).
    Nakayama, H.; Nozawa, M.; Kanaoka, Y. Chem. Pharm. Bull. 1979, 27, 2775.Google Scholar
  33. (32).
    Abramovitch, R. A.; Challand, S. R. J. Chem. Soc. Chem. Comm. 1972, 964.Google Scholar
  34. (33).
    Smirnov. V. A.; Brichkin, S. B. Chem. Phys. Lett. 1982, 87, 458.CrossRefGoogle Scholar
  35. (34).
    Liang, T.-Y.; Schuster, G. B. J. Am. Chem. Soc. 1987, 109, 7803.CrossRefGoogle Scholar
  36. (35).
    Inagaki, M.; Shingaki, T.; Nagai, T. Chem. Lett. 1982, 9.Google Scholar
  37. (36).
    Autrey, T.; Schuster, G. B. J. Am. Chem. Soc. 1987, 109, 5814.CrossRefGoogle Scholar
  38. (37).
    Poppinger, D.; Radom, L. J. Am. Chem. Soc. 1978, 100, 3674.CrossRefGoogle Scholar
  39. (38).
    McConaghy, J. C.; Lwowski, W. J. Am. Chem. Soc. 1967, 89, 2357, 4450.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Gary B. Schuster
    • 1
  1. 1.Department of ChemistryRoger Adams LaboratoryUrbanaUSA

Personalised recommendations