‘CAGED’ Compounds to Probe the Dynamics of Cellular Processes: Synthesis and Properties of some Novel Photosensitive P-2-Nitrobenzyl Esters of Nucleotides

  • John F. Wootton
  • David R. Trentham
Part of the NATO ASI Series book series (ASIC, volume 272)


Photochemical release of substrates or regulatory molecules is a developing technique that overcomes problems such as diffusional delays in the kinetic study of biological processes involving macromolecular assemblies. A wide range of phosphate esters such as nucleotides and nucleotide analogues can be alkylated on their phosphate groups with 1-(2-nitrophenyl)diazoethane and l-(3,4- dimethoxy-6-nitrophenyl)diazoethane. The phosphate esters so formed are generally biologically inert and may be photolyzed to starting material with near-UV (300-360 nm) irradiation. Flash photolysis of these ‘caged’ compounds with a pulsed laser or arc lamp releases up to several millimolar of a biologically active compound. Subsequent to photon absorption, dark reactions occur within the caged compounds before the active compound is released and measurement of the rate of these processes is necessary to determine the time resolution of the technique. P-l-(2-Nitrophenyl)ethyl esters of nucleoside 3′,5′-cyclic phosphates photolyze at 5 s∓1 at 21°C in aqueous solution at pH 7 and 11 M ionic strength. Below pH 7 the photolysis is acid catalyzed. P-l-(3,4-dimethoxy-6-nitrophenyl)ethyl esters of Pi and ATP photolyze more slowly than the corresponding P-l-(2-nitrophenyl)ethyl esters. The P-1-(3,4-dimethoxy-6-nitrophenyl)ethyl esters of cyclic nucleotides are unstable in water at pH 7. However the P-l-(3,4- dimethoxy-6-nitrobenzyl)esters of cyclic nucleotides appear to photolyze more rapidly than their P-1-(2-nitrobenzyl)ester counterparts, though with low quantum yield. The implications of these results for the photolysis mechanisms and the application of 2- nitrobenzyl phosphate esters in biological research is discussed.


Ethyl Ester Cyclic Nucleotide Phosphate Ester Photolysis Rate Cyclic Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurney, A.M., Lester, H.A. 1987. Phvsiol. Rev. 67: 583–617Google Scholar
  2. 2.
    Kaplan, J.H., Somlyo, A.P. 1989. Trends Neurosci. 12: in pressGoogle Scholar
  3. 3.
    McCray, J.A., Trentham, D.R. 1989. Ann. Rev. Biophvs. Biophvs. Chem. 18: in pressGoogle Scholar
  4. 4.
    Kaplan, J.H., Forbush, B., Hoffman, J.H. 1978. Biochemistry 17: 1929–35PubMedCrossRefGoogle Scholar
  5. 5.
    Goldman, Y.E., Hibberd, M.G., McCray, J.A., Trentham, D.R. 1982. Nature 300: 701–5PubMedCrossRefGoogle Scholar
  6. 6.
    Hibberd, M.G., Trentham, D.R. 1986. Ann. Rev. Biophys. Biophvs. Chem. 15: 119–61CrossRefGoogle Scholar
  7. 7.
    Rapp, G., Poole, K.J.V., Maeda, Y., Giith, K., Hendrix, J., Goody, R.S. 1986. Biophvs. J 50: 993–98CrossRefGoogle Scholar
  8. 8.
    Walker, J.W., Somlyo, A.V., Goldman, Y.E., Somlyo, A.P., Trentham, D.R. 1987. Nature 327: 249–52PubMedCrossRefGoogle Scholar
  9. 9.
    Arner, A., Goody, R.S., Rapp, G., Rüegg, J.C. 1987. J. Mus. Res. Cell Mot. 8: 377–85CrossRefGoogle Scholar
  10. 10.
    Somlyo, A.V., Goldman, Y.E., Fujimori, T., Bond, M., Trentham, D.R., Somlyo, A. 1988. J. Gen. Phvsiol. 91: 165–92CrossRefGoogle Scholar
  11. 11.
    Dantzig, J.A., Walker, J.W., Trentham, D.R., Goldman, Y.E. 1988. Proc. Natl. Acad.Sci. USA 85: 6716–20PubMedCrossRefGoogle Scholar
  12. 12.
    Forbush, B. 1984. Proc. Natl. Acad. Sci. USA 81: 5310–14PubMedCrossRefGoogle Scholar
  13. 13.
    Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. EMBO 4: 3079–86Google Scholar
  14. 14.
    Apell, H.J., Borlinghaus, R., Lauger, P. 1987. Membrane Biol. 97: 179–91CrossRefGoogle Scholar
  15. 15.
    Hartung, K., Grell, E., Hassebach, W., Bamberg, E. 1987. Biochim. Biophvs. Acta Gurney, A.M., Lester, H.A. 1987. Phvsiol. Rev. 67: 583–617Google Scholar
  16. 16.
    Pascolini, D., Herbette, L.G., Skita, V., Asturias, F., Scarpa, A., Blasie, J.K. 1988. Biophvs. J. 54: 679–87CrossRefGoogle Scholar
  17. 17.
    Dolphin, A.C., Wootton, J.F., Scott, R.H., Trentham, D.R. 1988. Pflügers Arch, 411: 628–36PubMedCrossRefGoogle Scholar
  18. 18.
    Karpen, J.W., Zimmerman, A.L., Stryer, L., Baylor, D.A. 1988. Proc. Natl. Acad. Sei. USA 85: 1287–91PubMedCrossRefGoogle Scholar
  19. 19.
    Nerbonne, J.M., Richard, S., Nargeot, J., Lester, H.A. 1984. Nature 310: 74–76PubMedCrossRefGoogle Scholar
  20. 20.
    Morrison, H.A. 1969. In The Chemistry of the Nitro and Nitroso Groups. Part 1, ed. H. Feuer, pp. 165–213. New York: Wiley. 771 PP. 900:209–20Google Scholar
  21. 21.
    McCray, J.A., Herbette, L., Kihara, T., Trentham, D.R. 1980. Proc. Natl. Acad. Sei. USA 77: 7237–41PubMedCrossRefGoogle Scholar
  22. 22.
    Walker, J.W., Reid, G.P., McCray, J.A., Trentham, D.R. 1988. Am. Chem. Soc. 110: 7170–77CrossRefGoogle Scholar
  23. 23.
    Goldman, Y.E., Hibberd, M.G., Trentham, D.R. 1984. J Phvsiol. 354: 577–604Google Scholar
  24. 24.
    Engels, J., Schlaeger, E-J. 1977. J. Med. Chem. 20: 907–11PubMedCrossRefGoogle Scholar
  25. 25.
    Yip, R.W., Sharma, D.K., Giasson, R., Gravel, D. 1985. J. Phvs. Chem. 89: 5328–30CrossRefGoogle Scholar
  26. 26.
    McClelland, R.A., Steenken, S. 1987. Can. J. Chem. 65: 353–56CrossRefGoogle Scholar
  27. 27.
    Schupp, H., Wong, W.K., Schnabel, W. 1987. J. Photochem. 36:85– 97CrossRefGoogle Scholar
  28. 28.
    Adams, S.R. Kao, J.P.Y., Grynkiewicz, G., Minta, A., Tsien, R.Y. 1988. Anu Chem. Soc. 110: 3212–20CrossRefGoogle Scholar
  29. 29.
    Zhu, Q.Q., Schnabel, W., Schupp, H. 1987. J. Photochem. 36: 85–97CrossRefGoogle Scholar
  30. 30.
    Walker, J.W., McCray, J.A., Hess, G.P. 1986. Biochemistry 25: 1799–1805PubMedCrossRefGoogle Scholar
  31. 31.
    Barltrop, J.A., Plant, P.J., Schofield, P. 1966. Chem. Commun. 822–23Google Scholar
  32. 32.
    Fetscher, C.A. 1963. Org. Svnth. Coll. 4: 735–37Google Scholar
  33. 33.
    Lee, C-H., Sharma, R.H. 1976. J. Am. Chem. Soc. 98: 3541–48PubMedCrossRefGoogle Scholar
  34. 34.
    Khwaja, T.A., Reese, C.B., Stewart, J.C.M. 1970. J. Chem. Soc. (C) 2092–2100Google Scholar
  35. 35.
    Secrist, J.A., Barrio, J.R., Leonard, N.J., Weber, G. 1972. Biochemistry 11: 3499–3506PubMedCrossRefGoogle Scholar
  36. 36.
    Tsou, K-C., Yip, K.F., Miller, E.E., Lo, K.W. 1974. Nucl. Acids Res. 1: 531–47PubMedCrossRefGoogle Scholar
  37. 37.
    Miyaka, H., Asai, H. 1982. Biochem. Biophvs. Res. Commun. 105: 296–302CrossRefGoogle Scholar
  38. 38.
    Walker, J.W., Reid, G.P., Trentham, D.R. 1989. Methods Enzvmol. 172: 288–301CrossRefGoogle Scholar
  39. 39.
    Edsall, J.T., Gutfreund, H. 1983. Biothermodynamics: The Study of Biochemical Processes at Equilibrium, pp. 228–36. New York: Wiley. 248 pp.Google Scholar
  40. 40.
    Jelenc, P.C., Cantor, C.R., Simon, S.R. 1978. Proc. Natl. Acad. Sci. USA 75: 3564–68PubMedCrossRefGoogle Scholar
  41. 41.
    Cantos, A., Marquet, J., Moreno-Manas, M., Castello, A. 1988. Tetrahedron 44: 2607–18CrossRefGoogle Scholar
  42. 42.
    Förster, T. 1959. Disc. Faraday Soc. 27: 7–17CrossRefGoogle Scholar
  43. 43.
    Ward, D.C., Reich, E., Stryer, L. 1969. J. Biol. Chem. 244:1228– 37PubMedGoogle Scholar
  44. 44.
    Rapp, G., Güth, K. 1988. Pflugers Arch. 411: 200–3PubMedCrossRefGoogle Scholar
  45. 45.
    Nerbonne, J.M. 1986. In Optical Methods in Cell Physiology, ed. P. De Weer, B.M. Salzberg, pp. 417–45. New York: Wiley - Interscience. 560 pp.Google Scholar
  46. 46.
    Weinstein, J., Blum, A.L., Souza, J.A. 1966. JL. Org. Chem. 31: 1983–85CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • John F. Wootton
    • 1
  • David R. Trentham
    • 2
  1. 1.Department of Physiology, College of Veterinary MedicineCornell UniversityIthacaUSA
  2. 2.Division of Physical BiochemistryNational Institute for Medical ResearchLondonUK

Personalised recommendations