The Assessment of Impacts of Possible Climate Changes on the Results of the Iiasa Rains Sulfur Deposition Model in Europe

  • S. E. Pitovranov


An analysis is made of the relationship between patterns in atmospheric circulation in Europe and the temperature regime of the Northern Hemisphere over the same period. The basis for classifying different types of atmospheric circulation or large-scale weather paterns [commonly known as Grosswettertypes (GWT-s) or Grosswetterlagen (GWL-n)] is the identification of the position of centers of cyclones, ridges and troughs. The linear regression between the frequency distribution of GWL-n and the deviation in the mean annual Northern Hemisphere extratropical temperatures from the 90-yr period (1891 to 1980) were tested. The results show that the null hypothesis, i.e. that there no linear relationship, is rejected at the 95% probability level (assuming a normal distribution) for several GWT-s and GWL-n. Changes in GWT-s and GWT-n frequency distribution associated with global warming could substantially change the long-range transport of pollutant over Europe. For example, the decrease in frequency of zonal circulation regimes and the more frequent meridional and blocked circulations (especially easterly flows) could result in a decrease of the existing net export of S pollutants from western to eastern Europe during the winter months.


Circulation Type Pollutant Transport Hemispheric Temperature Northern Hemisphere Temperature Easterly Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo, J. and Bartnicki, J.: 1985, ’An Approach to Uncertainty of a Long Range Air Pollutant Transport Model’, IIASA W23orking Paper WP-85–88, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  2. Bach, W.: 1984, Progress in Physical Geography 8, 583.CrossRefGoogle Scholar
  3. Bates, G. T. and Meehl, G.: 1986, Mon. Weather Rev. 114, 687.CrossRefGoogle Scholar
  4. Bauer, F.: 1947, Einfuhrung in die Grosswetterkunde, Dietrich, Wiesbaden.Google Scholar
  5. Bolin, B., Jäger, J., and Döös, B. R.: 1986, Ch. 1, ’The Greenhouse Efect, Climatic Change, and Ecosystems’, in B. Bolin, B. R. Döös, and J. Jäger (eds.), The Greenhouse Effects, Climatic Change, and Ecosystems, SCOPE 29, John Wiley and Sons, pp. 1–32.Google Scholar
  6. CD AC: 1983, Changing Climate, Report of the Carbon Dioxide Assessment Committee, National Academy Press, Washington, D.C.Google Scholar
  7. Draper, N. R. and Smith, H.: 1966, Applied Regressional Analysis, John Wiley and Sons, Inc., New York.Google Scholar
  8. Eliassen, A. and Saltbones, J.: 1983, Atmos. Environ. 17, 1457.CrossRefGoogle Scholar
  9. Gates, W. L.: 1985, Climatic Change 1, 267.CrossRefGoogle Scholar
  10. Gruza, G. V. and Ran’kova, E. Ya.: 1979, The Data of the Structure and Variability of Climate. The Sea-level Temperatures. The Northern Hemisphere, Obninsk, 203 pp.Google Scholar
  11. Hess, P. and Brezowsky, H.: 1952, Katalog der Grosswetterlagen Europas, Ber. Dtsch. Wetterdienstes, US-Zone, No. 33, Bad Kissingen.Google Scholar
  12. Jones, P. D. and Wigley, T. M. L.: 1982, ClimateMonitor 9, 43.Google Scholar
  13. Kovyneva, N. P.: 1984, Geographicheskaya 6, 29 (in Russian).Google Scholar
  14. Lough, J. M., Wigley, T. M. L., and Palutikof, J. P.: 1983, J. Clim. Appl. Meteorol. 22, 1673.CrossRefGoogle Scholar
  15. Palutikof, J. M., Wigley, T. M. L., and Lough, J. M.: 1984, Seasonal Climate Scenarios for Europe and North America in High-CO 2, Warmer World, U.S. Dept. of Energy, Carbon Dioxide Research Division, Technical Report TR012, 70 pp.Google Scholar
  16. Parry, M. L., Carter, T. R., and Konijn, N. T. (eds.): 1988, The Impact of Climatic Variations on Agriculture. Volume 1. Assessment In Cool Temperature and Cold Regions, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  17. Schlesinger, M. E.: 1985, Equilibrium and Transient Effects of Increased Atmospheric C02, Report No. 67, Oregon State University, Corvallis, Oregon 97331.Google Scholar
  18. U.S. EPA: 1984, Potential Climatic Impacts of Increasing Atmospheric C02 with Emphasis on Water Availability and Hydrology in the United States, Strategic Studies Staff, Office of Policy Analysis, April.Google Scholar
  19. Vinnikov, K. Ya., Gruza, G. V., Zakhazov, V. F., Kirillov, A. A., Kovyneva, N. P., and Ran’kova, E. Ya.: 1980, Soviet Meteorol. Hydrol. 6, 1.Google Scholar
  20. Vinnikov, K. Ya.: 1986, Climatic Sensitivity, Leningrad, Gidrometeoizdat, 223 pp. (in Russian).Google Scholar
  21. Vinnikov, K. Ya., Groisman, P. Ya., Lugina, K. M., and Golubev, A. A.: 1987, Meteorologia i Gidrologia 1, 45 (in Russian).Google Scholar
  22. Wigley, T. M. L. and Jones, P. D.: 1981, Nature 292, 205.CrossRefGoogle Scholar
  23. Wigley, T. M. L., Jones, P. D., and Kelly, P. M.: 1986, ’Empirical Climate Studies. Warm World Scenarios and the Detection of Climate Change Induced by Radiationly Active Gases’, Ch. 6; in B. Bolin, B. R. Döös, J. Jäger, and R. A. Warrick (eds.), The Greenhouse Effect, Climatic Change, and Ecosystems, John Wiley and Sons, Chichester-NY-Brisbane-Toronto-Singapore, pp. 271–322.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • S. E. Pitovranov
    • 1
  1. 1.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria

Personalised recommendations