Advertisement

Gamma-Ray Bursts: A Physical Perspective

  • Richard I. Epstein
Part of the NATO ASI Series book series (ASIC, volume 270)

Abstract

Observations of the spectra and angular distribution of gamma-ray bursts suggest that these events originate from near the surface of strongly magnetized, Galactic neutron stars. We first argue that the bursts are powered by the rotational or internal energy of neutron stars, rather than by accretion or thermonuclear energy, and then examine some physical issues related to powering gamma-ray bursts by neutron star glitches. These issues include how energy is accumulated or released by the differentially rotating neutron superfluid in a neutron star, the timescale for a glitch to occur, and mechanisms by which energy is transferred from excitations inside the star to high-energy particles above the stellar surface. We describe how relativistic electrons produce a photon-starved spectrum in the x-ray range, as observed in gamma-ray bursts, by Compton scattering the thermal radiation from the surface of a warm neutron star.

Keywords

Neutron Star White Dwarf Vortex Line Stellar Surface External Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpar, M. A. (1977) Ap. J 213, 527.Google Scholar
  2. Ambruster, C. and Wood, K. S. (1986) Astrophys. J. 311, 258.ADSCrossRefGoogle Scholar
  3. Ambruster, C, Wood, K. S., Meekins, J. F., Yentis, D. J., Smathers, H. Chubb, T. A., and Friedman, H. (1983) Astrophys. J. 269, 779.ADSCrossRefGoogle Scholar
  4. Anderson, P. W. and Itoh, N. (l975Nature 256, 25.CrossRefGoogle Scholar
  5. Anderson, B. and Lyne, A. G. (1983) Nature 303, 597.ADSCrossRefGoogle Scholar
  6. Atteia, J.-L. et al. (1987) Astrophys. J. Supp. 64, 305.ADSCrossRefGoogle Scholar
  7. Barat, C. et al. (1984) Astrophys. J. 280, 150.ADSCrossRefGoogle Scholar
  8. Baym, G. and Pines, D. (1971) Ann. Phys. 66, 816.ADSCrossRefGoogle Scholar
  9. Bildsten L. and Epstein, R. I. (1989) Astrophys. J., submittedGoogle Scholar
  10. Canuto, V., Lodenquai, J., and Ruderman, M. (1971) Phys. Rev. D 3, 2303.CrossRefGoogle Scholar
  11. Chao, N.-C, Clark, J. W., and Yang, C. H. (1972) Nucl Phys., A179, 320.ADSGoogle Scholar
  12. Chen, J. M. C., Clark, J. W., Krotscheck, E., and Smith, R. A. (1986) Nucl Phys., A451, 509.ADSGoogle Scholar
  13. Cline, T. L. et al. (1980) Astrophys. J. (Lett) 237, LI.Google Scholar
  14. Colgate, S. A. and Petschek, A. G. (1981) Astrophys. J. 248, 771.ADSCrossRefGoogle Scholar
  15. Colgate, S. A., Petschek, A. G., and Sarracino, R. (1984) in High Energy Transients in Astrophysics, ed. S. E. Woosley (Amer. Inst, of Phys., New York) p 548.Google Scholar
  16. Connors, A., Serlemitsos, P. J., and Swank, J. H. (1986) Astrophys. J. 303, 769.ADSCrossRefGoogle Scholar
  17. Downs, G. S. (1981) Astrophys. J. 249, 687.ADSCrossRefGoogle Scholar
  18. Ellison, D. C. and Kazanas, D. (1983) Astron. and Astrophys. 128, 102.ADSGoogle Scholar
  19. Epstein, R. I. (1985a) Astrophys. J. 291, 822.ADSCrossRefGoogle Scholar
  20. Epstein, R. I. (1985b) Astrophys. J. 297 555.ADSCrossRefGoogle Scholar
  21. Epstein, R. I. (1986) in Radiation Hydrodynamics, IAU Coll No. 89, eds. K. Winkler and D.Mihalas (Springer Verlag, Berlin) p. 305.Google Scholar
  22. Epstein, R. I. (1988a) Phys. Reports 163, 155.ADSCrossRefGoogle Scholar
  23. Epstein, R. I. (1988b) Astrophys. J., in press.Google Scholar
  24. Epstein, R. I. and Hurley, K. (1988) Astrophysical Letters and Commentaries, in press.Google Scholar
  25. Epstein, R. I. and Baym, G. (1989) in preparation.Google Scholar
  26. Epstein, R. I. and Baym, G. (1988) Astrophys. J. 328, 680.ADSCrossRefGoogle Scholar
  27. Fabian, A. C., Icke, V., and Pringle, J. E. (1976) Astrophys. Space Set. 42, 77.ADSCrossRefGoogle Scholar
  28. Feibelman, P. J. (1971) Phys. Rev. D 4,1589.CrossRefGoogle Scholar
  29. Fenimore, E. E. et al. (1988) Astrophys. J. (Lett), in press.Google Scholar
  30. Hameury, J. M., Bonazzola, S., Heyvaerts, J., Ventura, J. (1982) Astron. Astrophys. 111, 242.ADSGoogle Scholar
  31. Hartmann, D. and Epstein, R. I. (1989) in preparation.Google Scholar
  32. Harwit, M. and Salpeter, E. E. (1973) Astrophys. J. (Lett.) 186, L37.ADSCrossRefGoogle Scholar
  33. Heuter, G. J. (1984) in High Energy Transients in Astrophysics ed. S. E. Woosley (Amer. Inst. of Phys., New York) 373.Google Scholar
  34. Ho, C. and Epstein, R. I. (1989) Astrophys. J., submitted.Google Scholar
  35. Hoffberg, M., Glassgold, A. E., Richardson, R. W., and Ruderman, M. (1970) Phys. Rev. Letters 24, 775.ADSCrossRefGoogle Scholar
  36. Howard, W. M., Wilson, J. R., and Barton, R. T. (1981) Astrophys. J. 249, 302.ADSCrossRefGoogle Scholar
  37. Hudec, R. (1987) in The Physics of Compact Objects: Theory versus Observation COSPAR/IAU Symp., Sofia.Google Scholar
  38. Hurley, K. (1989) this volume (KH).Google Scholar
  39. Imamura, J. N. and Epstein, R. I. (1987) Astrophys. J. 313, 711.ADSCrossRefGoogle Scholar
  40. Jennings, M. C. (1988) Astrophys. J., submitted.Google Scholar
  41. Joss, P. C. and Rapport, S. A. (1984) Ann. Rev. Astron. Astrophys. 22, 537.ADSCrossRefGoogle Scholar
  42. Katoh, M., Murakami, T., Nishimura, J., Yamagami, T., Fujii, M., and Itoh, M. (1984) in High Energy Transients in Astrophysics ed. S. E. Woosley (Amer. Inst, of Phys., New York) 390.Google Scholar
  43. Klebesadel, R. W., Laros, J. G., and Fenimore, E. E. (1984), Bull. A mer. Astron. Soc. 16, 1016.ADSGoogle Scholar
  44. Lamb, D. Q., Lamb, F. K., and Pines, D. (1973) Nature Phys. Sci. 246, 52.Google Scholar
  45. Laros, J. G., Evans, W. D., Fenimore, E. E., Klebesadel, R. W., Shulman, S., and Fritz, G. (1984) Astrophys. J. 286, 681.ADSCrossRefGoogle Scholar
  46. Laros, J. G. et al. (1986) Nature 322, 152.ADSCrossRefGoogle Scholar
  47. Laros, J. G., et al. (1987) Astrophys. J. (Lett.) 320, L111.ADSCrossRefGoogle Scholar
  48. Laros, J. G. (1988), Nature 333, 124.ADSCrossRefGoogle Scholar
  49. Lewin, W. and Joss, P. C. (1981) Space Sci. Rev. 28, 3.Google Scholar
  50. Liang, E. P. and Petrosian, V., eds. (1986) Gamma Ray Bursts (Amer. Inst, of Phys., NY).Google Scholar
  51. Lyne, A. G., Manchester, R. N., and Taylor, J. H. (1985) Mon. Not Roy. Ast Soc. 213, 613.ADSGoogle Scholar
  52. Mazets, E. P. (1985) 19th Int. Cosmic Ray Conf., La Jolla, CA 9, 415.Google Scholar
  53. Mazets, E. P., Golenetskii, S. V., and Gur’yan, Yu. A. (1979) Sov. Astron. Lett 5, 343.Google Scholar
  54. Mazets, E. P. and Golenetskii, S. V. (1981) Astrophys. Space Sci. 75, 47.ADSCrossRefGoogle Scholar
  55. Mazets, E. P. et al. (1981a) Astrophys. Space Sci. 80, 3, 85, and 119.Google Scholar
  56. Mazets, E. P., Golenetskii, S. V., Aptekar, R. L., Gur’yan, Yu. A., and Ilinskii, V. N. (1981b) Nature 290, 378.ADSCrossRefGoogle Scholar
  57. Mazets, E. P., Golenetskii, S. V., Gur’yan, Yu. A., and Ilinskii, V. N. (1982a) Astrophys. and Space Sci. 84, 173; see also S. V. Golenetskii et al. (1987); Sov. Astr. Lett May/June.ADSCrossRefGoogle Scholar
  58. Mazets, E. P., Golenetskii, S. V., Ilinskii, V. N., Gur’yan, Yu. A., Aptekar, R. L., Panov, V. N., Sokolov, I. A., Sokolova, Z. Ya., and Kharitonova, T. V. (1982b) Astrophys. Space Sci. 82, 261.ADSCrossRefGoogle Scholar
  59. Matz, S. M., Forrest, D. J., Vestrand, W. T., Chupp, E. L., Share, G. H., and Rieger, E. (1985) Astrophys. J. (Lett) 288, L37.ADSCrossRefGoogle Scholar
  60. Meegan, C. A., Fishman, G. J., and Wilson, R. B. (1985) Astrophys. J. 291, 479.ADSCrossRefGoogle Scholar
  61. Michel, F. C. (1985) Astrophys. J. 290, 721.ADSCrossRefGoogle Scholar
  62. Migdal, A. B. (1971) Zh. Teor. Fiz. 61, 2210 [Sov. Phys. JETP 36 1052 (1973)].Google Scholar
  63. Mitrofanov, I. G. (1984), Astrophys. Space Sci. 105, 245.ADSCrossRefGoogle Scholar
  64. Murakami, T. et al. (1988) Nature, in press.Google Scholar
  65. Narayan, R. (1987) Astrophys. J. 319, 162.ADSCrossRefGoogle Scholar
  66. Newman, M. J. and Cox, A. N. (1980) Astrophys. J. 342, 319.ADSCrossRefGoogle Scholar
  67. Pacini, F. and Ruderman, M. (1974), Nature 251, 399.ADSCrossRefGoogle Scholar
  68. Pines, D., Shaham, J., Alpar, M. A., and Anderson, P. W. (1980) Prog, in Theo. Phys. Suppl 69, 376.Google Scholar
  69. Ramaty, R., Bonazzola, S., Cline, T. L., Kazanas, D., Meszaros, P., and Lingenfelter, R. E. (1980), Nature 287, 122.ADSCrossRefGoogle Scholar
  70. Ruderman, M. (1987), Proceedings of The XIII Texas Symposium, Chicago.Google Scholar
  71. Ruderman, M. (1976) Astrophys. J. 203, 213.ADSCrossRefGoogle Scholar
  72. Share, G. H., Matz, S. M., Messina, D. C., Nolan, P. L., Chupp, E. L., Forrest, D. J., and Cooper, J. F. (1986) Adv. Space Res. 6, 15.ADSGoogle Scholar
  73. Smak, J. (1984) Pub. Ast Soc. Pacific 96, 5.ADSCrossRefGoogle Scholar
  74. Stollman, G. M. (1987) Astron. and Astrophys. 178, 143.ADSGoogle Scholar
  75. Tsygan, A. I. (1975), Astron. and Astrophys. 44, 21.ADSGoogle Scholar
  76. Takatsuka, T. (1972) Prog. Theor. Physics 48, 1517.ADSCrossRefGoogle Scholar
  77. Takatsuka, T. (1984) Prog. Theor. Physics 71, 1432.ADSCrossRefGoogle Scholar
  78. Tremaine, S. D. and Zytkov, A. (1986) Astrophys. J. 301, 155.ADSCrossRefGoogle Scholar
  79. Van Buren, D. (1981), Astrophys. J. 249, 297.ADSCrossRefGoogle Scholar
  80. Yang, C.-H. and Clark, J. W. (1971) Nucl Phys., A174, 49.ADSGoogle Scholar
  81. Woosley, S. E. and Tamm, R. E. (1976) Nature 263, 101.ADSCrossRefGoogle Scholar
  82. Woosley, S. E. and Wallace, R. K. (1982) Astrophys. J. 258, 716.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Richard I. Epstein
    • 1
  1. 1.Space Astronomy and Astrophysics ESS-9, MS D436Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations