Ion Implantation

  • E. Rimini
Chapter
Part of the NATO ASI Series book series (NSSE, volume 164)

Abstract

Ion Implantation has emerged as a common technique of doping semiconductors for integrated circuit production [1–4]. Ion implantation represents the introduction of energetic charged particles into targets with enough energy to penetrate beyond the surface region. The advantages of ion implantation include:
  1. (i)

    precise on-line control of the total number of implanted ions,

     
  2. (ii)

    independent control of the penetration depth from dose,

     
  3. (iii)

    achievement of a wide concentration range, with the upper limit generally set by sputtering yield rather than by equilibrium solubility,

     
  4. (iv)

    ease of integration within a silicon planar technology. The oxide layers used for masking against diffusion can also be used to mask against the ion beam,

     
  5. (v)

    intrinsic low temperature processing, although a subsequent annealing is generally necessary.

     

Keywords

Rapid Thermal Annealing Complementary Metal Oxide Semiconductor Amorphous Layer Target Atom Collision Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ion Implantation Techniques H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982).Google Scholar
  2. [2]
    Ion Implantation and Beam Processing, J. S. Williams and J. M. Poate, Eds. Academic Press, New York (1984).Google Scholar
  3. [3]
    Ion Implantation: Science and Technology, J. F. Ziegler, Eds., Academic Press, Orlando, Florida (1984).Google Scholar
  4. [4]
    H. Ryssel and I. Ruge, Ion Implantation, John Wiley & Sons, New York (1986).Google Scholar
  5. [5]
    K. A. Pickar Applied Solid State Science, Vol. 5, R. Wolfe, Ed., Academic Press, New York (1975), p. 151.Google Scholar
  6. [6]
    K. J. Reeson, Nucl. Instrum. & Methods Phys. Res., B19/20, 269 (1987).Google Scholar
  7. [7]
    H. W. Lam and R. F. Pinizzotto, J. Cryst. Growth, 63, 554 (1983).Google Scholar
  8. [8]
    G. K. Celler, P. L. F. Hemment, K. W. West, and J. M. Gibson, Appl. Phys. Lett., 48, 532 (1986).Google Scholar
  9. [9]
    J. F. Gibbons, Proc. IEEE, 60, 1062 (1972).Google Scholar
  10. [10]
    G. K. Celler, and T. E. Seidel Applied Solid State Science, Part C, D. Kahng, Ed., Academic Press, New York (1985), p. 2.Google Scholar
  11. [11]
    Laser Annealing of Semiconductors, J. M. Poate and J. W. Mayer, Eds., Academic Press, New York (1982).Google Scholar
  12. [12]
    Surface Modification and Alloying, J. M. Poate, G. Foti and D. C. Jacobson, Eds., Plenum, New York (1983).Google Scholar
  13. [13]
    Laser and Electron-Beam Solid Interaction and Materials Processing, Vol. 1, G. J. Gibbons, L. D. Hess, and T. W. Sigmon, Eds., North Holland, New York (1981).Google Scholar
  14. [14]
    C. Hill, Nucl. Instrum. & Methods Phys. Res., B19/20, 348 (1987).Google Scholar
  15. [15]
    T. Tokuyama, Nucl. Instrum. & Methods Phys. Res., B19/20, 299 (1987).Google Scholar
  16. [16]
    M. I. Current and W. A. Keenan, Solid State Technol., 28 (2), 139 (1985).Google Scholar
  17. [17]
    H. Glawischnig, Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982), p. 3.Google Scholar
  18. [18]
    D. Aitken, Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982), p. 23.Google Scholar
  19. [19]
    J. H. Freeman, Nucl. Instrum. & Methods, 22, 306 (1963).Google Scholar
  20. [20]
    C. M. McKenna, Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982), p. 73.Google Scholar
  21. [21]
    G. Ryding and M. Farley, Nucl. Instrum. & Methods, 189, 295 (1981).Google Scholar
  22. [22]
    H. E. Schiott, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 35 (9), 1 (1966).Google Scholar
  23. [23]
    J. Lindhard, M. Scharff and H. E. Schiott, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 33 (14), 1 (1963).Google Scholar
  24. [24]
    K. B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Plenum, New York (1975).Google Scholar
  25. [25]
    J. Lindhard and A. Winter, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 34 (4), 1 (1964).Google Scholar
  26. [26]
    J. A. Davies, Surface Modification and Alloying, J. M. Poate, G. Foti and D. C. Jacobson Eds., Plenum, New York (1983), p. 189.Google Scholar
  27. [27]
    K. B. Winterbon, P. Sigmund, and J. B. Sanders Mat.-Fys. Medd. Dan. Vidensk. Selsk., 37 (14), 1 (1970).Google Scholar
  28. [28]
    S. Kalbitzer and H. Oetzmann, Proc. of the 1978 Int. Conf. on Ion Beam Modification of Materials, Hungarian Academy of Sciences, Budapest (1979), p. 3.Google Scholar
  29. [29]
    D. K. Brice, Ion Implantation Range and Energy Deposition Distributions, Vol. 1, Plenum, New York (1975).Google Scholar
  30. [30]
    J. P. Biersack and L. G. Haggmark, Nucl. Instrum. & Methods, 174, 257 (1980).Google Scholar
  31. [31]
    D. H. Lee and J. W. Mayer, Proc. IEEE, 62, 1241 (1974).Google Scholar
  32. [32]
    W. K. Hofker, Philips Res. Rep. Suppl., 8, (1975).Google Scholar
  33. [33]
    J. F. Gibbons, Handbook on Semiconductors, Vol. 3, T. S. Moss, Ed., North-Holland, Amsterdam (1980), Chapt. 10.Google Scholar
  34. [34]
    K. Tsukamoto, Y. Akasaka, and K. Kijima, Jpn. J. Appl. Phys., 19, 87 (1980).Google Scholar
  35. [35]
    K. Cho, W. R. Allen, T. G. Finstad, W. K. Chu, J. Liu, and J. J. Wortman, Nucl. Instrum. & Methods Phys. Res., B7/8, 265 (1985).Google Scholar
  36. [36]
    T. E. Seidel, VLSI Technology, S. M. Sze, Ed., McGraw-Hill, New York (1983), p. 219.Google Scholar
  37. [37]
    H. Ishiwara, S. Furukawa, J. Yamada, and M. Kawamura, Ion Implantation in Semiconductors, S. Namba, Ed., Plenum, New York (1975), p. 423.Google Scholar
  38. [38]
    T. Hirao, K. Lone, and S. Takayanagi, J. Appl. Phys., 50, 193 (1979).Google Scholar
  39. [39]
    E. F. Kennedy, C. Csepregi, J. W. Mayer and T. W. Sigmon, Ion Implantation in Semiconductors and Other Materials, F. Chernow, Ed., Plenum, New York (1977), p. 511.Google Scholar
  40. [40]
    J. Sansbury, Ion Implantation and Its Contribution to Device and Integrated Circuit Technology, Varian Seminar, VR-99–1975-Vacuum Division, Palo Alto, California (1978).Google Scholar
  41. [41a]
    J. Bottiger, J. A. Davies, P. Sigmund, and K. B. Winterbon, Radiat Eff., 11, 69 (1971);Google Scholar
  42. [41b]
    J. Bottiger, H. Wolder Jorgensen, and K. B. Winterbon, Radiat Eff., 11, 133 (1971).Google Scholar
  43. [42]
    P. Sigmund, Phys. Rev., 184, 383 (1969).Google Scholar
  44. [43]
    H. H. Andersen and H. L. Bay, J. Appl. Phys., 46, 1919 (1975).Google Scholar
  45. [44]
    H. Ryssel and K. Hoffman, Process and Device Simulation for MOS-VLSI Circuits, P. Antognetti, D. Antoniadis, R. Dutton, and W. Oldham, Eds., NATO ASI Series, Martinus Nijhoff, The Hague, Netherlands (1983), p. 125.Google Scholar
  46. [45]
    S. Furukawa, H. Matsumura, and H. Ishiwara, Jpn. J. Appl. Phys., 11, 134 (1972).Google Scholar
  47. [46]
    H. Matsumura and S. Furukawa, Jpn. J. Appl. Phys., 14, 1783 (1975).Google Scholar
  48. [47]
    J. Lindhard, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 34 (14), 1 (1965).Google Scholar
  49. [48]
    J. A. Davies, Material Characterization Using Ion Beams, J. P. Thomas, Ed., Plenum, New York (1979), p. 343.Google Scholar
  50. [49]
    R. G. Wilson, H. L. Dunlap, D. M. Jamba and M. R. Myers, Angular Sensitivity of Controlled Implanted Doping Profiles, NBS Spec. Publ. No. 400–49 National Bureau of Standards, Gaithersburg, Maryland.Google Scholar
  51. [50]
    N. L. Turner, M. I. Current, T. C. Smith, and D. Crane, Solid State Technol., 28 (2), 163 (1985).Google Scholar
  52. [51]
    M. I. Current, R. A. Martin, K. Doganis, and R. H. Bruce, Semicond. Int., 8 (6), 106 (1985).Google Scholar
  53. [52]
    D. Pramanik and M. I. Current, Solid State TechnoL, 27 (5), 211 (1984).Google Scholar
  54. [53]
    C. M. McKenna, C. Russo, B. Pedersen, D. Downey, and R. Liebert, Semicond. Int., 9 (4), 101 (1986).Google Scholar
  55. [54]
    R. D. Rathmell and M. L. Sundquist, Nucl. Instrum. & Method Phys. Res., B6, 56 (1985).Google Scholar
  56. [55]
    D. A. Thompson and R. S. Walker, Radiat Eff., 36, 91 (1978).Google Scholar
  57. [56]
    F. F. Morehead Jr. and B. L. Crowder, Radiat. Eff., 6, 27 (1970).Google Scholar
  58. [57]
    F. Spaepen and D. Turnbull, Laser-Solid Interactions and Laser Processing, Am. Inst. Phys. Conf. Series, No. 50, American Institute of Physics, New York (1979), p. 73.Google Scholar
  59. [58]
    L. A. Christel, J. F. Gibbons, and S. Mylroie, J. Appl. Phys., 51, 6176 (1980).Google Scholar
  60. [59]
    B. K. Brice, J. Appl. Phys., 46, 3385 (1975).Google Scholar
  61. [60]
    P. V. Pavlov, D. I. Tel’baum, E. I. Zorin, V. I. Alekseev, Sov. Phys.-Solid State, 8, 2141 (1967).Google Scholar
  62. [61]
    R. S. Walker and D. A. Thompson, Radiat. Eff. 37, 113 (1978).Google Scholar
  63. [62]
    G. H. Kinchin and R. S. Pease, Rep. Progr. Phys., 18, 1 (1985).Google Scholar
  64. [63]
    P. Sigmund, Appl. Phys. Lett, 25, 169 (1974).Google Scholar
  65. [64]
    T. E. Seidel and A. U. MacRae — First International Conference on Ion Implantation, F. H. Eisen and C. S. Chadderton, Eds., Gordon and Breach, London (1971), p. 169.Google Scholar
  66. [65]
    A. Chu and J. F. Gibbons, Ion Implantation, F. Chernow, Ed., Plenum, New York (1976), p. 711.Google Scholar
  67. [66]
    L. Csepregi, E. F. Kennedy, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys., 49, 3096 (1978).Google Scholar
  68. [67]
    L. Csepregi, J. W. Mayer, and T. W. Sigmon, Appl. Phys. Lett., 29, 92 (1976).Google Scholar
  69. [68]
    G. Foti, L. Csepregi, E. F. Kennedy, J. W. Mayer, P. P. Pronko, and M. D. Reichtin, Philos. Mag., A37, 591 (1978).Google Scholar
  70. [69]
    L. Csepregi, E. F. Kennedy, T. J. Gallagher, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys., 48, 4234 (1977).Google Scholar
  71. [70]
    E. F. Kennedy, L. Csepregi, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys., 48, 4241 (1977).Google Scholar
  72. [71]
    S. S. Lau, W. F. Tseng, and J. W. Mayer, Handbook on Semiconductors, Vol. 3, S. P. Keller, Ed., North-Holland, Amsterdam (1980), Chapt. 7.Google Scholar
  73. [72]
    I. S. Suni, G. Goltz, M. G. Grimaldi, M.-A. Nicolet, and S. S. Lau, Appl. Phys. Lett. 40, 269 (1982).Google Scholar
  74. [73]
    J. S. Williams and R. G. Elliman, Appl. Phys. Lett., 37, 829 (1980).Google Scholar
  75. [74]
    S. U. Campisano and A. E. Barbarino, Appl. Phys., 25, 153 (1981).Google Scholar
  76. [75]
    J. S. Williams, Surface Modification and Alloying, J. M. Poate, G. Foti, and D. C. Jacobson, Eds., Plenum, New York (1983), p. 133.Google Scholar
  77. [76]
    J. S. Williams and R. G. Elliman, Phys. Rev. Lett., 51, 1069 (1983).Google Scholar
  78. [77]
    H. Tamura, T. Ikeda, and T. Tokuyama, Second International Conference on Ion Implantation, I. Ruge and J. Graul, Eds., Springer-Verlag, Berlin, (1972), p. 96.Google Scholar
  79. [78]
    S. Mader, Ion Implantation: Science and Technology, J. F. Ziegler, Ed., Academic Press, Orlando, Florida (1984), p. 109.Google Scholar
  80. [79]
    K. Tsukamoto, Y. Akasaka, and K. Kijima, Jpn. J. Appl. Phys., 19, 87 (1980).Google Scholar
  81. [80]
    H. Müller, J. Gyulai, J. W. Mayer, W. K. Chu, and T. W. Sigmon, J. Electrochem. Soc., 122, 1234 (1975).Google Scholar
  82. [81]
    E. Rimini, Surface Modification and Alloying, J. M. Poate, G. Foti, and D. C. Jacobson, Eds., Plenum, New York (1983), p. 15.Google Scholar
  83. [82]
    G. Foti and E. Rimini Laser Annealing of Semiconductors, J. W. Mayer and J. M. Poate, Eds. Academic Press, New York (1982), p. 203.Google Scholar
  84. [83]
    J. F. Gibbons and T. W. Sigmon, Laser Annealing of Semiconductors, J. M. Poate and J. W. Mayer, Eds., Academic Press, New York (1982), p. 325.Google Scholar
  85. [84]
    T. E. Seidel, C. S. Pai, D. J. Lischner, and S. S. Lau, Extended Abst. Electrochem. Soc., 84–7, 184 (1984).Google Scholar
  86. [85]
    T. E. Seidel, D. J. Lischner, C. S. Pai, R. V. Knoell, D. H. Maker, and D. C. Jacobson, Nucl Instrum. & Methods Phys. Rev., B7/8, 251 (1985).Google Scholar
  87. [86]
    D. J. Lischner and G. K. Celler, Laser and ElectronBeam Interactions with Solids, B. R. Appleton and G. K. Celler, Eds. North-Holland, Amsterdam (1982), p. 759.Google Scholar
  88. [87]
    S. R. Wilson, W. H. Paulson, R. B. Gregory, A. H. Hamdi, and F. D. McDaniel, J. Appl Phys., 55, 12 (1984).Google Scholar
  89. [88]
    S. R. Wilson, R. B. Gregory, and W. H. Paulson, Mater. Res. Soc. Symp. Proc, Vol. 52, Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 181.Google Scholar
  90. [89]
    R. E. Sheet, Mater. Res. Soc. Symp. Proc., Vol. 52, Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 191.Google Scholar
  91. [90]
    A. Gat, IEEE Electron Device Lett., 2, 85 (1981).Google Scholar
  92. [91]
    J. Gelpay and P. Stump, Microelectronic Manufacturing and Testing, Lake Publishing, Libertyville, Illinois (1983), p. 21.Google Scholar
  93. [92]
    R. T. Fulks, C. J. Russo, P. R. Hanley, and T. I. Karmins, Appl. Phys. Lett., 39, 604 (1981).Google Scholar
  94. [93]
    Operational Manual for 210M, AG Associated, Palo Alto, California (1982).Google Scholar
  95. [94]
    M. Y. Tsai and B. G. Streetman, J. Appl. Phys., 50, 183 (1979).Google Scholar
  96. [95]
    V. K. Basre and D. F. Downey, Sixth International Conference on Ion Implantation, Berkeley, California (1986).Google Scholar
  97. [96]
    N. E. B. Cowern, K. J. Yallup, and D. J. Godfrey, Appl. Phys. Lett., 48, 704 (1986).Google Scholar
  98. [97]
    S. Solmi, S. Guimaraes, E. Landi, and P. Negrini, Semiconductor Silicon 1986, H. R. Huff, T. Abe, and B. Kolbeson, Eds., The Electrochemical Society, Pennington, New Jersey (1986), p. 583.Google Scholar
  99. [98]
    D. E. Davies, IEEE Electron Device Lett., 6, 397 (1985).Google Scholar
  100. [99]
    D. G. Beanland, Ion Implantation and Beam Processing, J. S. Williams and J. M. Poate, Eds., Academic Press, New York (1984), p. 261.Google Scholar
  101. [100]
    J. Narayan and O. W. Holland, J. Electrochem. Soc., 131, 2651 (1984).Google Scholar
  102. [101]
    S. Cannavò, M. G. Grimaldi, E. Rimini, G. Ferla, and L. Gandolfi, Appl. Phys. Lett., 47, 138 (1985).Google Scholar
  103. [102]
    J. S. Williams, R. G. Elliman, W. L. Brown, and T. E. Seidel, Mater. Res. Soc Symp. Proc., Vol. 37, Materials Research Society, Pittsburgh, Pennsylvania, (1985), p. 127.Google Scholar
  104. [103]
    J. S. Williams, R. G. Elliman, W. L. Brown, and T. E. Seidel, Phys. Rev. Lett., 55, 1482 (1985).Google Scholar
  105. [104]
    A. Leiberich, D. M. Maher, R. V. Knoell and W. L. Brown, Nucl. Instrum. & Methods Phys. Res., B19/20, 457 (1987).Google Scholar
  106. [105]
    S. Cannavò, A. La Ferla, E. Rimini, G. Ferla, and L. Gandolfi, J. Appl. Phys., 59, 4038 (1986).Google Scholar
  107. [106]
    S. Cannavò, A. La Ferla, S. U. Campisano, E. Rimini, G. Ferla, L. Gandolfi, J. Liu, and M. Servidori, Mat. Res. Soc. Symp. Proc., Vol. 51, Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 328.Google Scholar
  108. [107]
    D. L. Kwong, D. C. Meyers, N. S. Alvi, IEEE Electron Device Lett., 6, 244 (1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • E. Rimini
    • 1
  1. 1.Dipartimento di FisicaUniversita di CataniaCataniaItaly

Personalised recommendations