Premartensitic Microstructures as Seen in the High Resolution Electron Microscope: A Study of a Ni-al Alloy

  • D. Schryvers
  • L. E. Tanner
  • G. Van Tendeloo
Part of the NATO ASI Series book series (NSSE, volume 163)


Recent investigations of displacive transformations in a wide range of metallic [1,2] and non-metallic materials [3,4] have been providing new insights into precursor behavior, viz., changes in parent phase properties and microstructure leading to these transformations. This behavior is viewed as evidence that the parent phase effectively “prepares itself” for the eventual transformation via related lattice displacements (usually incommensurate with the basic lattice), where the process is believed driven by anomalous temperature-dependent phonon effects [1–7]. The elucidation of this behavior is now aiding in the development of more effective models for displacive transformations, particularly those producing martensitic phases in metallic alloys [2,5–7].


High Resolution Electron Microscope Phonon Dispersion Curve Model Unit Cell Displacement Wave HREM Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proc. Symp. on Pretransformation Behavior Related to Displacive Transformations. L. E. Tanner, W. A. Soffa, Eds., Met. Trans. A, 19A (1988) in press.Google Scholar
  2. 2.
    V.V. Kondrat’yev, V.G. Pushin, Fiz. Met. Metall., 60, 629 (1985).Google Scholar
  3. 3.
    Structural Phase Transitions 1. Topics in Current Physics, No. 23, K. A. Muller, H. Thomas, Eds. (Springer-Verlag, Berlin, 1981).Google Scholar
  4. 4.
    Incommensurate Phases in Dielectrics. 2, R. Blinc, A. P. Levanyuk, Eds. (Elsevier, Amsterdam, 1986).Google Scholar
  5. 5.
    A. Lasalmonie, Proc. Conf. on Solid State Phase Transitions in Metals and Allovs. (Les Editions de Physique, Orsay, 1978) p.631.Google Scholar
  6. 6a.
    P.-A. Lindgard, O. G. Mouritsen, Phys. Rev. Lett., 57, 2458 (1986)ADSCrossRefGoogle Scholar
  7. 6b.
    G. R. Barsch, J. A. Krumhansl, Met. Trans. A, 19A (1988) in press.Google Scholar
  8. 7.
    G.R. Barsch, J.A. Krumhansl, L.E. Tanner, M. Wuttig, Scripta Met. 21, 1257 (1987)CrossRefGoogle Scholar
  9. 8.
    L. E. Tanner, Phil. Mag. 14, 111 (1966).ADSCrossRefGoogle Scholar
  10. 9.
    L. E. Tanner, A. R. Pelton, R. Gronsky, J. de Phys., 43, Colloq. C4, C4–169 (1982).Google Scholar
  11. 10a.
    I.M. Robertson, C.M. Wayman, Phil. Mag. A, 48, 421 (1983)ADSCrossRefGoogle Scholar
  12. 10b.
    I.M. Robertson, C.M. Wayman, Phil. Mag. A, 48, 443(1983)ADSCrossRefGoogle Scholar
  13. 10c.
    I.M. Robertson, C.M. Wayman, Phil. Mag. A, 48, 629 (1983).ADSCrossRefGoogle Scholar
  14. 11.
    M. Sugiyama, R. Oshima, F.E. Fujita, J. Jpn. Inst. Met., 48, 881 (1984).Google Scholar
  15. 12.
    L.E. Tanner, A.R. Pelton, R. Gronsky, M.E. Wall, G. Van Tendeloo, submitted to Scripta Met., (1986).Google Scholar
  16. 13.
    S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, L.E. Tanner, Phys. Rev. Lett., 57, 3199 (1986).ADSCrossRefGoogle Scholar
  17. 14.
    L. E. Tanner, H. J. Leamy, Order-Disorder Transformations in Alloys. H. Warlimont, Ed., (Springer, Berlin, 1974) p.180.Google Scholar
  18. 15.
    J.D.C. McConnell, Min. Mag., 38, 1 (1971).CrossRefGoogle Scholar
  19. 16.
    P.K. Davies, J. Am. Ceram. Soc. 69, 796 (1986).CrossRefGoogle Scholar
  20. 17.
    K. Enami, J. Hasunama, A. Nagasawa, S. Nenno, Scripta Met., 10, 879 (1976).CrossRefGoogle Scholar
  21. 18.
    J.A. Krumhansl, Proc. Conf. on Nonlinearity in Condensed Matter. A.R. Bishop, D.K. Campbell,P.Kumar,S.E.Trullinger,Eds.(Springer-Verlag, Berlin,1987)p.255Google Scholar
  22. 19.
    J.A. Krumhansl, Proc. Conf. on Competing Interactions — Statics and Dynamics. R. LeSar, A. R. Bishop, Eds. (Springer-Verlag Berlin, 1988) in press.Google Scholar
  23. 20.
    Y. Morii, M. lizumi, J. Phys. Soc. Jpn., 54, 2948 (1985).ADSCrossRefGoogle Scholar
  24. 21.
    V. V. Martynov, K. Enami, L. G. Khandros, S. Nenno, A. V. Tkachenko, Phys. Met. Metall., 55, 136 (1983).Google Scholar
  25. 22.
    M. Ahlers, Prog. Mat., 30, 135 (1986).CrossRefGoogle Scholar
  26. 23.
    R. Kilaas, Proc. Microbeam Anal. Soc. Meeting 1987. (San Francisco Press, San Francisco, 1987) in press.Google Scholar
  27. 24.
    S. Hashimoto, Acta Cryst., A30, 792 (1974).Google Scholar
  28. 25.
    D. Van Dyck, G. Van Tendeloo, S. Amelinckx, Ultramicroscopy, 15, 357 (1984).CrossRefGoogle Scholar
  29. 26.
    R. De Ridder, G. Van Tendeloo, D. Van Dyck, S. Amelinckx, J. de Phys., 38, Colloq. C7, C7–178 (1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • D. Schryvers
    • 1
    • 2
  • L. E. Tanner
    • 1
  • G. Van Tendeloo
    • 3
  1. 1.Chemistry and Materials Science DepartmentLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.National Center for Electron Microscopy, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  3. 3.RUCAUniversity of AntwerpAntwerpenBelgium

Personalised recommendations