Electronic Theory of Phase Stability in Substitutional Alloys: A Comparison Between the Connolly-Williams Scheme and the Generalized Perturbation Method

  • M. Sluiter
  • P. Turchi
Part of the NATO ASI Series book series (NSSE, volume 163)


A detailed analysis of the tendencies toward ordering and phase separation and more generally the stability properties at T ≠ 0 K in substitutional alloys is carried out using the presciption proposed by Connolly and Williams and the Generalized Perturbation Method. This enables a discussion of the viability and the basic assumptions of both approaches. The effective cluster interactions which enter such a study are derived from a simple but realistic tight binding model.


Body Interaction Generalize Perturbation Coherent Potential Approximation Cluster Variation Method Substitutional Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kikuchi, Phys. Rev. 81, 998 (1951).MathSciNetADSGoogle Scholar
  2. J.M. Sanchez, F. Ducastelle and D. Gratias, Physica 128A, 334 (1984).MathSciNetADSGoogle Scholar
  3. D. de Fontaine, Sol. St. Physics 34, 73 (1979).CrossRefGoogle Scholar
  4. 2.a.
    K. Binder, J.L. Lebowitz, M.H. Phani and M.H. Kalos, Acta Metall. 29, 1655 (1981).CrossRefGoogle Scholar
  5. 2.a.
    K. Binder in ‘Monte Carlo Methods in Statistical Physics’, Springer-Verlag, Topics in Current Physics Vol.7, ed. K. Binder (1986).Google Scholar
  6. 3.
    V. Heine and D. Weaire, Sol. St. Physics 24, 249 (1970).CrossRefGoogle Scholar
  7. 4.
    B.L. Gyorffy and G.M. Stocks, Phys. Rev. Lett. 50, 374 (1983).ADSCrossRefGoogle Scholar
  8. 5.
    A. Gonis, X.G. Zhang, A.J. Freeman, P. Turchi, G.M. Stocks and D.M. Nicholson, submitted to Phys.Rev. B.,and refs. therein.Google Scholar
  9. 6.
    F. Ducastelle and F. Gautier, J. of Phys. F 6, 2039 (1976).ADSCrossRefGoogle Scholar
  10. 7.
    A. Bieber and F. Gautier, J. of the Phys. Soc. of Jap. 53, 2061 (1984).ADSCrossRefGoogle Scholar
  11. 8.a
    P. Turchi, Thesis, University Pierre et Marie Curie, Paris, France (1984), (unpublished).Google Scholar
  12. 8.b
    A. Bieber and F. Gautier, Acta Metall. 34, 2291 (1986) and refs therein.CrossRefGoogle Scholar
  13. 9.
    P. Turchi, M. Sluiter and D. de Fontaine, Phys. Rev. B 36, 3161 (1987).ADSCrossRefGoogle Scholar
  14. 10.
    C. Sigli, M. Kosugi and J.M. Sanchez, Phys. Rev. Lett. 57, 253 (1986).ADSCrossRefGoogle Scholar
  15. 11.
    J.W.D. Connolly and A.R. Williams, Phys. Rev. B 27, 5169 (1983).ADSCrossRefGoogle Scholar
  16. 12.
    A.A. Mbaye, L.G. Ferreira and A. Zunger, Phys. Rev. Lett. 58, 49 (1987).ADSCrossRefGoogle Scholar
  17. K. Terakura, T. Oguchi, T. Mohri and K. Watanabe, Phys. Rev. B 35, 2169 (1987).ADSCrossRefGoogle Scholar
  18. T. Mohri, K. Terakura, T. Oguchi and K. Watanabe, submitted to Acta Metall. A.E. Carlsson, Phys. Rev. B 35, 4858 (1987).CrossRefGoogle Scholar
  19. 13.
    R. Haydock, Sol.St. Phys. 35, 215 (1980).CrossRefGoogle Scholar
  20. 14.
    J. Kanamori and Y Kakehashi, J. de Phys. 38, Colloq. C7-274 (1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. Sluiter
    • 1
  • P. Turchi
    • 2
  1. 1.Department of Materials Science and Mineral EngineeringUniversity of California - BerkeleyBerkeleyUSA
  2. 2.Department of Materials Science (L 280)Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations