Cluster Interactions and Thermodynamic Properties of Al-Transition Metal alloys

  • A. E. Carlsson
Part of the NATO ASI Series book series (NSSE, volume 163)


Recent interest in Al-transition metal alloys is motivated both by their desirable technological properties1 and by their basic scientific interest, including recently discovered phenomena such as icosahedral phase formation.2 To perform calculations of the properties of these alloys at an atomistic level, it is necessary to ascertain the basic physical mechanisms underlying bonding and ordering. In this paper we study these mechanisms by calculating cluster interactions describing atomic rearrangements on a fixed underlying fcc lattice. We then use these interactions to analyze the systematics of heats of formation, solid solubilities, and structural preferences in Al-transition metal alloys.


Metal Alloy Cluster Interaction Early Transition Metal Basic Physical Mechanism Alloy Phase Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, L. F. Mandolfo, Aluminum Alloys: Structure and Properties (Butterworths, Boston, 1976).Google Scholar
  2. 2.a.
    D. S. Shectman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).ADSCrossRefGoogle Scholar
  3. 2.b.
    For an overview, see C. L. Henley, Comm. Cond. Mat. Phys. 13, 59 (1987).Google Scholar
  4. 3.
    J. W. D. Connolly and A. R. Williams, Phys. Rev. B 27, 5168 (1983).ADSCrossRefGoogle Scholar
  5. 4.
    A. R. Williams, J. Kübler, and C. D. Gelatt, Phys. Rev. B 19, 6094 (1979).ADSCrossRefGoogle Scholar
  6. 5.
    L. Hedin and B. I. Lundquist, J. Phys. C 4, 2065 (1971).ADSCrossRefGoogle Scholar
  7. 6.
    A. E. Carlsson, Phys. Rev. B 35, 4858 (1987).Google Scholar
  8. 7.
    A. E. Carlsson and J. M. Sanchez, Solid State Comm., in press.Google Scholar
  9. 8.
    D. Hackenbracht and J. Kiibler, J. Phys. F10, 427 (1980).ADSCrossRefGoogle Scholar
  10. 9.
    A. E. Carlsson, Phys. Rev. Lett. 59, 1108 (1987).ADSCrossRefGoogle Scholar
  11. 10.a.
    For example, contributions associated with changes in the fourth moment (with the lower moments fixed) must have at least two zero crossings as functions of the band filling. See F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids 32, 285 (1971)ADSCrossRefGoogle Scholar
  12. 10.b.
    V. Heine and J. H. Sampson, J. Phys. F13, 2155 (1983).ADSCrossRefGoogle Scholar
  13. 11.
    R. Hultgren, R. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, Ohio, 1973).Google Scholar
  14. 12.
    R. E. Watson, L. H. Bennett, and D. A. Goodman, Acta Metall. 31, 1285 (1983).CrossRefGoogle Scholar
  15. 13.
    For another local approach to the relative stability of transition metal local environments, see A. C. Redfield and A. Zangwill, Phys. Rev. Lett. 58, 2322 (1987).ADSCrossRefGoogle Scholar
  16. 14.
    P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, Ohio, 1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. E. Carlsson
    • 1
  1. 1.Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations