Advertisement

Correlation Between Structural and Optical Properties OF GaAs-on-Si Grown by Molecular Beam Epitaxy

  • K. Ploog
  • F. E. G. Guimaraes
  • W. Stolz
Part of the NATO ASI Series book series (NSSE, volume 160)

Abstract

The current activities in the heteroepitaxial growth of polar III–V compounds on nonpolar Si substrates are stimulated by the technological importance awaited from the integration of GaAs- and Si-based devices on a common Si substrate (1). Although the previous major obstacles hampering the progress in this field, i. e. the formation of antiphase boundaries, the large lattice mismatch of 4.1%, and the difference in the thermal expansion coefficient, have now been overcome to a certain extent, the understanding of the microstructural growth process and its influence on the electronic properties of GaAs-on-Si is still not adequate. In this paper we describe the correlation between the structural and the optical properties of GaAs layers of thickness ranging from 0.05 – 4.0 μm which are grown by molecular beam epitaxy (MBE) on (100)Si substrates oriented 20 off in [011] direction. High-resolution double-crystal X-ray diffraction (XRD) is used to evaluate the crystal quality and to determine the strain existing in the epilayer, while photoluminescence (PL) as well as photoluminescence excitation (PLE) spectroscopy are applied for the characterization of the optical properties. A comparison with GaAs-on-GaAs grown under similar conditions is also made.

Keywords

GaAs Layer Excitation Density Large Lattice Mismatch Luminescence Line Antiphase Domain Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For an extensive survey see: “Heteroepitaxy on Silicon I”, Mater. Res. Soc. Symp. Proc. 67, 1–273 (1986) and “Heteroepitaxy on Silicon”, Mater. Res. Soc. Symp. Proc. 91, 1–508 (1987).Google Scholar
  2. 2.
    A.C. Gossard, P.M. Petroff, W. Wiegmann, R. Dingle, and A. Savage, Appl. Phys. Lett. 29, 323 (1976); T. Isu, D.S. Jiang, and K. Ploog, Appl. Phys. A 43, 75 (1988).Google Scholar
  3. 3.
    P.N. Uppal and H. Krömer, J. Appl. Phys. 58, 2195 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    T. Sakamoto and G. Hashiguchi, Jpn. J. Appl. Phys. 25, L 78 (1986); D.E. Aspnes and J. Ihm, Phys. Rev. Lett. 57, 3054 (1987).Google Scholar
  5. 5.
    F. Briones, D. Golmayo, L. Gonzales, M. Recio, A. Ruiz, and J.P. Silveira. Inst. Phys. Conf. Ser. 91[, 165 (1988); L. Gonzales, A. Ruiz, Y. Gonzales, A. Mazuelas, and F. Briones, this volume.Google Scholar
  6. 6.
    L. Tapfer and K. Ploog, Phys. Rev. B 33, 5565 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    W. Stolz, F.E. G. Guimaraes, and K. Ploog, J. Appl. Phys. 63, 492 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • K. Ploog
    • 1
  • F. E. G. Guimaraes
    • 1
  • W. Stolz
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungFederal Republic of Germany

Personalised recommendations