Advertisement

Mombe and Pemocvd Growth of GaAs on Si (100) Substrates

  • M. Kamp
  • J. Leiber
  • J. Musolf
  • A. Brauers
  • M. Weyers
  • H. Heinecke
  • H. Lüth
  • P. Balk
Part of the NATO ASI Series book series (NSSE, volume 160)

Abstract

The concentrated study of the epitaxial growth of GaAs layers on Si substrates in recent years has lead to the preparation of device quality material /1,2/. Both MOCVD (metal organic chemical vapor deposition) and MBE (molecular beam epitaxy) have been used successfully. In order to deal with the problems of lattice mismatch and differential thermal contraction often the so-called “two step method” /3,4/ is being used. This growth sequence starts with the deposition of a thin (10–100 nm) buffer layer at reduced substrate temperature (usually below 650K) before depositing the top layer at temperatures conventionally used in GaAs homoepitaxy. GaAs growth on Si substrates appears to require large V/III ratios for the starting materials in the gas phase, indicating that an excess of the group V component is an essential condition for high quality heteroepitaxial growth. For the growth of InP on Si using the MOCVD approach the same situation holds true /5/. Since it is likely that the availability of the group V element rather than that of the undissociated group V source compound is an essential requirement the use of technological approaches providing large amounts of elemental As appears to be indicated.

Keywords

Buffer Layer Metal Organic Chemical Vapor Deposition GaAs Layer Group Versus Element Differential Thermal Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    JCC Fan, JM Poate eds.: Heteroepitaxy on Silicon. MRS Proc. Vol. 67 ( MRS, Pittsburgh, 1986 )Google Scholar
  2. 2.
    JCC Fan, JM Phillips, BY Tsaur: Heteroepitaxy on Silicon II. MRS Proc. Vol. 91 ( MRS, Pittsburgh, 1986 )Google Scholar
  3. 3.
    M Akiyama, Y Kawarada, M Yamaguchi: Jpn. J. Appl. Phys. 23, L843, 1984Google Scholar
  4. 4.
    S M Koch, SJ Rosner, D Sisnon, JS Harris, see ref. 1 p. 37Google Scholar
  5. 5.
    A Yamamoto, N Uchida, M Yamaguchi: Optoelectronics — Devices and Technology 1, 41, 1986Google Scholar
  6. 6.
    H Heinecke, A Brauers, H Lüth, P Balk: J. Crystal Growth 77 241, 1986ADSCrossRefGoogle Scholar
  7. 7.
    N Pütz, E Veuhoff, H Heinecke, M Heyen, H Lüth, P Balk: J. Vac. Sci. Technol. £2, 671, 1986Google Scholar
  8. 8.
    A Brauers, F Grafahrend, H Heinecke, H Lüth, P Balk: Proc. of Advanced Materials for Telecommunications (EMRS, Strassbourg, 1986) XIII, les editions des physique, p. 231Google Scholar
  9. 9.
    H Heinecke, F Grafahrend, A Brauers, H Lüth, P Balk: MRS Proc. Vol. 75 ( MRS, Boston, 1987 ) p. 747Google Scholar
  10. 10.
    SJ Pearton, CR Abernatky, R Caruso, SM Vernon, KT Short, J M Brown, S N G Chu, M Starola, VE Haven: J.Appl.Phys. 63, 775, 1988ADSCrossRefGoogle Scholar
  11. 11.
    T Soga, T Imori, M Umeno, S Hattori: Jpn. J. Phys. 26, L536, 1987ADSCrossRefGoogle Scholar
  12. 12.
    RM Lum, JK Klingert, BA Davidson, MG Lamont: Appl. Phys. Lett. 51, 36, 1987ADSCrossRefGoogle Scholar
  13. 13.
    WI Wang: J.Vac.Sci.Techn. 83, 552, 1985Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. Kamp
    • 1
  • J. Leiber
    • 1
  • J. Musolf
    • 1
  • A. Brauers
    • 1
  • M. Weyers
    • 1
  • H. Heinecke
    • 1
  • H. Lüth
    • 1
  • P. Balk
    • 1
  1. 1.Institute of Semiconductor Electronics and II. Physikalisches, InstituteTechnical Universty AachenAachenGermany

Personalised recommendations