Yttria Stabilised Zirconia Heteroepitaxy on Silicon by Ion Beam Sputtering

  • C. Pellet
  • C. Schwebel
  • P. Legagneux
  • J. Siejka
Part of the NATO ASI Series book series (NSSE, volume 160)


Among the different substrates for silicon on insulator structures, yttria stabilised zirconia (YSZ) offers several advantages as high chemical stability, good resistance to cosmic ray and the possibility of silicon oxydation through the zirconia at the Si/YSZ interface (1). However the silicon on zirconia (SOZ) technology is presently restrained by the size of available zirconia monocrystal (namely 2 inch in diameter) which is inconsistent with usual silicon processes. To overcome this problem, a solution consists in the use of zirconia heteroepitaxial thin film deposited on silicon wafers, as substrate, instead of bulk zirconia.In this way, we have deposited YSZ thin film on Si by ion beam sputter deposition (IBSD) at the Institut d’Electronique Fondamentale.This technique is used in this laboratory since few years, for the deposition of dielectric (2) metallic (3,4) or epitaxial semiconducting films (5). Especially we have demonstrated the feasability of silicon homoepitaxial thin films with good electrical properties (6). The IBSD technique consists in the sputtering of a target by an energetic ion beam issued from an ion source, in this configuration the plasma is isolated from the deposition chamber where ultra high vacuum condition could be achieved. Comparatively to conventionnal R.F. sputtering, this allow purer layers and in situ characterization. This paper present our first results in the study of YSZ heteroepitaxy on Si.


Oxygen Partial Pressure Auger Electron Spectrometry Yttria Stabilise Zirconia Reflection High Energy Electron Diffraction Deposition Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Pribat, L.M. Mercandalli, J. Siejka, J. Perrière, J. Appl. Phys. 58 (1), 1985, P. 313.ADSCrossRefGoogle Scholar
  2. 2.
    D. Bouchier, A. Bosseboeuf,Thin Solid Films, 139 (1986), p. 95.ADSCrossRefGoogle Scholar
  3. 3.
    F. Meyer, C. Pellet, C. Schwebel,Le Vide Les couches minces, 42, 236 (1987).Google Scholar
  4. 4.
    F. Meyer, E. Velu, C. Pellet, C. Schwebel, C. Dupas, Revue de Physique Appliquée (Mai 88).Google Scholar
  5. 5.
    C. Schwebel, G. Gautherin, 34th A.V.S. Symposium, Nov. 1987.Google Scholar
  6. 6.
    C. Schwebel, F. Meyer, G. Gautherin, C. Pel let,J. Vac. Sci. Technol. B4(5), Sept.-Oct. 1986.Google Scholar
  7. 7.
    C. Schwebel, C. Pellet, G. Gautherin,Nucl. Instr. andMeth. B18, 525 (1987).CrossRefGoogle Scholar
  8. 8.
    J.S. Solomon, J.T. Grant, J. Vac. Sci. Technol. A3 (2), 373 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Abrahams, J.L. Hutchinson, G.R. Booker,Phys. Stat. Sol. (a) M, K3, (1981).Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • C. Pellet
    • 1
  • C. Schwebel
    • 1
  • P. Legagneux
    • 2
  • J. Siejka
    • 3
  1. 1.Institut d’Electronique Fondamentale (UA22)CNRS-Université Paris SudOrsay CedexFrance
  2. 2.Thomson CSF/LCR Domaine de CorbevilleOrsayFrance
  3. 3.Groupe de Physique des Solides de l’Ecole Normale Supérieure Tour 23Paris CedexFrance

Personalised recommendations