Advertisement

Growth and Electronic Transport in Thin Epitaxial CoSi2 — Si Heterostructures

  • F. Arnaud d’Avitaya
  • P. A. Badoz
  • A. Briggs
  • C. d’Anterroches
  • J. Y. Duboz
  • G. Fishman
  • G. Glastre
  • J. C. Pfister
  • C. Puissant
  • E. Rosencher
  • G. Vincent
Part of the NATO ASI Series book series (NSSE, volume 160)

Abstract

Thin epitaxial CoSi2 layers on Si have been grown by direct reaction in ultrahigh vacuum. The reaction path from Si + Co to CoSi2 as a fonction of the initial Co thickness will be described, along with the evolution of interface roughness as seen by high resolution TEM. The generation of pinholes during high temperature annealing will be discussed as a function of geometry and stress relaxation.

Electrical measurements (resistivity, Hall effect and superconducting transition temperature) will be presented on thin layers made either by direct reaction or by codeposition, with particular emphasis on the effect of interfaces on electronic transport.

Keywords

High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Interface Roughness Silicide Phase Silicide Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Derrien J and Arnaud d’Avitaya F: 3. Vac. Sci. Technol. A.5, 2111 (1987) and references there in.Google Scholar
  2. 2.
    Tung, RT, in Silicon Moleculer Beam Epitaxy, C.R.C Press (in press).Google Scholar
  3. 3.
    Rosencher E, Arnaud d’Avitaya F, Badoz PA, d’Anterroches C, Glastre G, Vincent G and Pfister J.C.: Mat. Res. Soc. Symp. Proc. 91, 415 (1987) and references there in.Google Scholar
  4. 4.
    D’Anterroches C: Surface Science 168, 751, (1986).ADSCrossRefGoogle Scholar
  5. 5.
    Arnaud d’Avitaya F, Delage S, Rosencher E and Derrien J: 3. Vac. Sci. Technol. B.2, 770, (1985).Google Scholar
  6. 6.
    D’Anterroches C and Madar R: (unpublished).Google Scholar
  7. 7.
    D’Anterroches C, Yakupoglu HN, Lin TL, Fathaner RW and Grunthaner PJ: Appl. Phys. Lett. 52, 434 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    Tung, RT and Batstone JL, Appl. Phys. Lett. 52, 1611, (1988).Google Scholar
  9. 9.
    Glastre G, Rosencher E, Arnaud d’Avitaya F, Puissant C, Pons M, Vincent G and Pfister JC: Appl. Phys. Lett. 52, 899 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    D’Anterroches C and Straboni A, Private Communication.Google Scholar
  11. 11.
    Von Kanel H, Henz J and Ospelt M, Physica Scripta T19, 158 (1987).CrossRefGoogle Scholar
  12. 12.
    Henz J, Von Kanel H, Ospett M and Wachter P, Surface Science 189/190, 1055 (1987).ADSGoogle Scholar
  13. 13.
    Duboz JY, Badoz PA, Rosencher E, Henz J, Ospelt M, Von Kanel H and Briggs A, (unpublished).Google Scholar
  14. 14.
    Badoz PA, Briggs A, Rosencher E, Arnaud d’Avitaya F and d’Anterroches C, Appl. Phys. Lett. 51, 169 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    Fishman G and Calecki D (unpublished).Google Scholar
  16. 16.
    Badoz PA, Rosencher E, Briggs A and Arnaud d’Avitaya F, Superlattices and Microstruct. 2, 425 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • F. Arnaud d’Avitaya
    • 1
  • P. A. Badoz
    • 1
  • A. Briggs
    • 2
  • C. d’Anterroches
    • 1
  • J. Y. Duboz
    • 1
  • G. Fishman
    • 3
  • G. Glastre
    • 1
  • J. C. Pfister
    • 1
  • C. Puissant
    • 1
  • E. Rosencher
    • 1
  • G. Vincent
    • 1
  1. 1.CNET-CNS — Chemin du Vieux ChêneMeylan CedexFrance
  2. 2.CNRS-CRTBTGrenoble CedexFrance
  3. 3.Laboratoire de Spectromètrie PhysiqueSaint Martin d’Hères CédexFrance

Personalised recommendations