Advertisement

Superconductor-Silicon Heterostructures

  • A. W. Kleinsasser
Part of the NATO ASI Series book series (NSSE, volume 160)

Abstract

The dramatic recent discoveries of oxide superconducting materials having transition temperatures (Tc) exceeding 120 K have led to great expectations for electronic applications (1,2). There is now an apparent convergence of semiconductor technology, with growing low temperature applications such as liquid nitrogen cooled high speed computers, and superconductor technology, which now offers the possibility of superconductors which function at or above 77 K. Although significant technical difficulties must be overcome before any hybrid technology can be practical, there is already significant interest in the use of superconducting interconnects between semiconductor circuits (1,3). Applications for high Tc superconducting devices, taking advantage of the convenience of higher operating temperature or improvements in parameters such as the energy gap, are also expected. However, the lack of generally useful three-terminal superconducting devices (4) should lead to an increased interest in new devices, including superconductor-semiconductor hybrids (5).

Keywords

Weak Link Schottky Barrier Coherence Length Tunnel Junction Field Effect Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.P. Malozemoff, W.J. Gallagher, and R.E. Schwall, in Chemistry of High Temperature Superconductors, D.L. Nelson, M.S. Whittingham, and T.F. George, Eds., Am. Chem. Soc., Washington, D.C., 1987, page 280.CrossRefGoogle Scholar
  2. 2.
    M. Nisenoff, in Low Temperature Electronics and High Temperature Superconductors. S.I. Raider, R. Kirschman, H. Hayakawa, and H. Ohta, Eds., Electrochem. Soc., Inc., Pennington, N.J., 1988, page 344.Google Scholar
  3. 3.
    O.K. Kwon, B.W. Langley, R.F.W. Pease, and M.R. Beasley, IEEE Electron Dev. Lett., EDL–8, 582 (1987).Google Scholar
  4. 4.
    W.J. Gallagher, IEEE Trans. Magnetics, MAG-21, 709 (1985).Google Scholar
  5. 5.
    T. van Duzer, in Low Temperature Electronics and High Temperature Superconductors, S.I. Raider, R. Kirschman, H. Hayakawa, and H. Ohta, Eds., Electrochem. Soc., Inc., Pennington, N.J., 1988, page 352.Google Scholar
  6. 6.
    A.H. Silver, A.B. Chase, M. McColl, and M.F. Millea, in Future Trends in Superconductive Electronics, B.S. Deaver, C.M. Falco, J.H. Harris, and S.A. Wolf, Eds., American Institute of Physics, New York, 1978, page 364.Google Scholar
  7. 7.
    H. Kroger, IEEE Trans. Electron Dev. ED-27, 2016 (1980).Google Scholar
  8. 8.
    F. A. Padovani, in Semiconductors and Semimetals, Vol. 7, Part A; R.K. Willardson and Albert C. Beer, ., Academic Press, New York, 1971, page 75.Google Scholar
  9. 9.
    M. Russo in Josephson Effect-Achievements and Trends, A. Barone, Ed., World Scientific, Singapore, 1986, page 216.Google Scholar
  10. 10.
    G. Deutscher and P.G. de Gennes in Superconductivity, R.D. Parks, ed., Marcel Dekker, New York, 1969, Vol. 2, page 1005.Google Scholar
  11. 11.
    W. Silvert, J. Low Temp. Phys., 20, 439 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    M. Hatano, T. Nishino, and U. Kawabe, Appl. Phys. Lett. 50, 52 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    L.B. Roth, J.A. Roth, and P.M. Schwartz, in Future Trends in Superconductive Electronics, B.S. Deaver, C.M. Falco, J.H. Harris, and S.A. Wolf, Eds., American Institute of Physics, New York, 1978, page 384.Google Scholar
  14. 14.
    T. Nishino, M. Hatano, and U. Kawabe, Jpn. J. Appl. Phys. 26* Suppl. 26 - 3, 1543 (1987).Google Scholar
  15. 15.
    K.K. Likharev, Revs. Mod. Phys. 5_L 101 (1979).Google Scholar
  16. 16.
    J. Seto and T. Van Duzer, in Proc. 13th Int’L Conf. on Low Temp. Phys., Plenum, New York, 1972, Vol. 3, pg. 328.Google Scholar
  17. 17.
    L.G. Aslamazov and M.V. Fistul, Zh. Eksp. Teor. Fiz. 8L 382 (1981) [Sov. Phys. JETP 54,206 (1981)].Google Scholar
  18. 18.
    V.Z. Kresin Phys Rev. B, 34, 7587 (1986).CrossRefGoogle Scholar
  19. 19.
    Y. Tanaka and Tsukada, Solid State Commun. 59, 683 (1986) and 61, 445 (1987).Google Scholar
  20. 20.
    R.B. van Dover, A. De Lozanne, and M.R. Beasley, J. Appl. Phys. 52, 7327 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    A.W. Kleinsasser and T.N. Jackson, Jpn. J. Appl. Phys. 26, Suppl. 26–3, 1545 (1987).Google Scholar
  22. 22.
    H.H. Berger, Sol. State. Electron. 15, 145 (1972).ADSCrossRefGoogle Scholar
  23. 23.
    C.L. Huang and T. van Duzer, Appl. Phys. Lett. 25, 753 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    M. Schyfter, J. Maah-Sango, N. Raley, R. Ruby, B.T. Ulrich, and T. van Duzer, IEEE Trans. Magnetics, MAG–13, 862 (1977).Google Scholar
  25. 25.
    T. Nishino, E. Yamada, and U. Kawabe, Phys. Rev. B33, 2042 (1986) and B34, 4857 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    T. Kawakami and H. Takayanagi, Appi. Phys. Lett. 46, 92 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    A.W. Kleinsasser, T.N. Jackson, G.D. Pettit, H. Schmid, J.M. Woodall, and D.P. Kern, Appi. Phys. Lett. 49, 1741 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    T.D. Clark, R.J. Prance, and A.D.C. Grassie, J. Appi. Phys. 5L 2736 (1980).Google Scholar
  29. 29.
    H. Takayanagi and T. Kawakami, Phys. Rev. Lett. 54, 2449 (1985). and Int’l. Electron Dev. Mtg. Digest, IEEE Inc., Piscataway, N.J., 1985, page 98.Google Scholar
  30. 30.
    T. Nishino, M. Miyake, Y. Harada, and U. Kawabe, IEEE Electron Dev. Lett. EDL–6. 297 (1985).Google Scholar
  31. 31.
    A.W. Kleinsasser, Phys. Rev. B 35, 8753 (1987).ADSCrossRefGoogle Scholar
  32. 32.
    T. Kawakami and H. Takayanagi, Jpn. J. Appl. Phys. 26, Suppl. 26–3, 2059 (1987).Google Scholar
  33. 33.
    Z. Ivanov and T. Claeson, Jpn. J. Appl. Phys. 26, Suppl. 26–3, 1617 (1987).Google Scholar
  34. 34.
    M. Hiraki and T. Sugano, Proc. 1987 Int’l. Superconductivity Electronics Conf., Tokyo, Japan and Trans. IECE Japan E70. 389 (1987).Google Scholar
  35. 35.
    C.A. Mead, Proc. IRE 48, 359 (1960).Google Scholar
  36. 36.
    M. Heiblum, Sol. State Electron. 24, 343 (1981).ADSCrossRefGoogle Scholar
  37. 37.
    S. Luryi and A. Kastalsky, Physica 134B, 453 (1985).Google Scholar
  38. 38.
    M. Heiblum and M. Fischetti, in Physics of Quantum Electron Device, F. Capasso ed., Springer-Verlag, Berlin, 1987.Google Scholar
  39. 39.
    S.M. Sze and H.K. Gummel, Solid State Electron. 9, 751 (1966).ADSCrossRefGoogle Scholar
  40. 40.
    S. Luryi, IEEE Electron Dev. Lett. EDL–6, 178 (1985).Google Scholar
  41. 41.
    A.F.J. Levy, Appl. Phys. Lett. 48, 1609 (1985).ADSCrossRefGoogle Scholar
  42. 42.
    M. Tonouchi, H. Sakai, and T. Kobayashi, Jpn. J. Appi. Phys. 25, 705 (1986).ADSCrossRefGoogle Scholar
  43. 43.
    C.R. Crowell and S. Sze, J. Appl. Phys. 37, 2683 (1966).ADSCrossRefGoogle Scholar
  44. 44.
    A.F.J. Levy and T.H. Chiu, Appl. Phys. Lett. 51, 984 (1987).ADSCrossRefGoogle Scholar
  45. 45.
    W.P. Dumke, in Low Temperature Electronics and High Temperature Superconductors. S.I. Raider, R. Kirschman, H. Hayakawa, and H. Ohta, Eds., Electrochem. Soc., Inc., Pennington, N.J., 1988, page 449.Google Scholar
  46. 46.
    H. Sakai, Y. Kurita, M. Tonouchi, and T. Kobayashi, Jpn. J. Appl. Phys. 25, 835 (1986).ADSCrossRefGoogle Scholar
  47. 47.
    T. Kobayashi, H. Sakai, Y. Kurita, M. Tonouchi, and M. Okada, Jpn. J. Appl. Phys. 25, 402 (1986).ADSCrossRefGoogle Scholar
  48. 48.
    J.C. Hensel, A.F.J. Levi, R.T. Tung, and J.M. Gibson, Appi. Phys. Lett. 47, 151 (1985). J.C. Hensel, Appl. Phys. Lett. 49, 522 (1986). E. Rosencher, P.A. Badoz, J.C. Pfister, F. Arnaud d’Avitaya, G. Vincent, and S. Delage, Appl. Phys. Lett. 49, 271 (1986).CrossRefGoogle Scholar
  49. 49.
    D.J. Frank, M.J. Brady, and A. Davidson, IEEE Trans. Magnetics MAG-21, 721 (1985).Google Scholar
  50. 50.
    A. Davidson, M.J. Brady, D.J. Frank, J.M. Woodall, and A.W. Kleinsasser, IEEE Trans. Magnetics MAG–23. 727 (1987).Google Scholar
  51. 51.
    H. Tamura, S. Hasuo, and T. Yamaoka, Jpn. J. Appl. Phys. 24, L709 (1985).ADSCrossRefGoogle Scholar
  52. 52.
    A. Yoshida, H. Tamura, T. Fujii, and S. Hasuo, Proc. 1987 Int’l. Superconductivity Electronics Conf., Tokyo, Japan.Google Scholar
  53. 53.
    H. Tamura, N. Fujimaki, and S. Hasuo, J. Appl. Phys. 60, 711 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. W. Kleinsasser
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations