One-Electron Redox Reactions Between Radicals and Molecules. Dominance of Inner-Sphere Mechanisms

  • S. Steenken
Part of the NATO ASI Series book series (ASIC, volume 260)

Abstract

In aqueous solution the electron transfer between (reducing) carbon-centered radicals or (oxidizing) heteroatom-centered inorganic radicals and organic molecules often proceeds by covalent bond formation between the radical and the molecule followed by heterolysis of the so-formed bond between the carbon and the heteroatom. It is the heterolysis step in which the actual electron transfer between the radical and the molecule takes place. This makes electron transfer a part of the area of (heterolytic) solvolysis reactions. Structure-activity relations for heterolysis of the radical-molecule adducts and thus the electron transfer between the adduct components can be rationalized in terms of the classical solvolysis concepts.

Keywords

Electron Transfer Leaving Group Electron Transfer Mechanism Good Leaving Group Solvent Reorganization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    For a general discussion of electron transfer processes see a) Eberson, L. Electron Transfer Reactions in Organic Chemistry, Springer, Berlin 1987.Google Scholar
  2. 1.b)
    Cannon, R.D. Electron Transfer Reactions, Butterworths, London 1980.Google Scholar
  3. 2.
    Minisci, F.; Citterio, A. Adv. Free Radical Chem. 1980. 6, 65.Google Scholar
  4. 3.a)
    Adams, G.E.; Breccia, A.; Rimondi, C. (Eds.) Advanced Topics in Hypoxic Cell Radiosensiiizarion, Plenum, New York 1982.Google Scholar
  5. 3.b)
    Wardman, P.; Clarke, E.D. In New Chemo-and Radiosensitizing Drugs’, Breccia, A.; Fowler, J.F., Eds., Edizione Scientifiche: Lo Scarabeo, Italy, 1985, p. 21.Google Scholar
  6. 4.
    McMillan, M.; Norman, R.O.C. J. Chem. Soc. B 1968, 590.Google Scholar
  7. 5.
    Wardman, P. in Radiation Chemistry: Principles and Applications, Verlag Chemie, Weinheim 1987, p. 565, and references in this article.Google Scholar
  8. 6.
    Jagannadham, V.; Steenken, S. J. Am. Chem. Soc. 1988, 110, 2188.CrossRefGoogle Scholar
  9. 7.
    Willson, R.L. Int. J. Radiat. Biol. 1970, 17, 349.CrossRefGoogle Scholar
  10. 8.
    von Sonntag, C. The Chemical Basis of Radiation Biology, Taylor and Francis, London 1987.Google Scholar
  11. 9.
    Steenken, S. in: Free Radicals: Chemistry, Pathology and Medicine, Vol. 3, Rice-Evans, C.; Dormondy, T. (eds.), Richelieu Press, London 1988, p. 51.Google Scholar
  12. 10.
    Janzen, E.G.; Gerlock, J.L. J. Am. Chem. Soc. 1969, 91, 3108.CrossRefGoogle Scholar
  13. 11.
    Sleight, R.B.; Sutcliffe, L.H. Trans. Faraday Soc. 1971, 67, 2195.CrossRefGoogle Scholar
  14. 12.
    Jagannadham, V.; Steenken, S. J. Am. Chem. Soc. 1984, 106, 6542.CrossRefGoogle Scholar
  15. 13.
    Marcus, R.A. Annu. Rev. Phys. Chem. 1964, 15, 155.CrossRefGoogle Scholar
  16. 14.
    Eibenberger, J.; Steenken, S.; Schulte-Frohlinde, D. J. Phys. Chem. 1980, 84, 704.CrossRefGoogle Scholar
  17. 15.
    Steenken, S. manuscript in preparation.Google Scholar
  18. 16.
    Fujita, S.; Steenken, S. J. Am. Chem. Soc. 1981, 103, 2540.CrossRefGoogle Scholar
  19. 17.
    Hazra, D.K.; Steenken, S. J. Am. Chem. Soc. 105, 4380.Google Scholar
  20. 18.
    Schuchmann, M.N.; Steenken, S.; Wroblewski, J.; von Sonntag, C. Int. J. Radiat. Biol. 1984, 46, 225.CrossRefGoogle Scholar
  21. 19.a)
    Steenken, S.; Jagannadham, V. J. Am. Chem. Soc. 1985, 107, 6818.CrossRefGoogle Scholar
  22. 19.b)
    Jagannadham, V.; Steenken, S. J. Phys. Chem. 1988, 92, 111.CrossRefGoogle Scholar
  23. 20.
    Bothe, E.; Behrens, G.; Schulte-Frohlinde, D. Z. Naturforsch. 1977, 32b, 886.Google Scholar
  24. 21.
    Bothe, E.; Schuchmann, M.N.; Schulte-Frohlinde, D.; von Sonntag, C. Photochem. Photobiol. 1978, 28, 639; Bothe, E.; Schulte-Frohlinde, D. Z. Naturforsch. 1980, 35b, 1035.CrossRefGoogle Scholar
  25. 22.
    Das, S.; Schuchmann, M.N.; Schuchmann, H.-P.; von Sonntag, C. Chem. Ber. 1987, 120, 319.CrossRefGoogle Scholar
  26. 23.
    Al-Sheikley, M.I.; Hissung, A.; Schuchmann, H.P.; Schuchmann, M.N.; von Sonntag, C; Garner, A.; Scholes, G. J. Chem. Soc. Perkin Trans. 2 1984, 601.Google Scholar
  27. 24.
    Grünbein, W.; Fojtik, A.; Henglein, A. Z. Naturforsch. 1969, 24, 1336. Grünbein, W.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1969, 73, 376.Google Scholar
  28. 25.
    Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R.W. J. Am. Chem. Soc. 1977, 99, 163.CrossRefGoogle Scholar
  29. 26.
    Eberson, L. Adv. Phys. Org. Chem. 1982, 18, 79.CrossRefGoogle Scholar
  30. 27.
    Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R.W. J. Am. Chem. Soc. 1977, 99, 163.CrossRefGoogle Scholar
  31. 28.
    Steenken, S. unpublished results.Google Scholar
  32. 29.
    Davies, M.J.; Gilbert, B.C. J. Chem. Soc. Perkin Trans. 2 1984, 1809.Google Scholar
  33. 30.
    Steenken, S. in Radiation Research, Proceedings 8 th Internat. Congr. Radiation Research, Edinburgh 1987; Vol. 2, Fielden. E.M.: Fowler. J.F.: Hendry. J.H.: Scott. D. (eds). Taylor and Francis, London 1987, p. 84.Google Scholar
  34. 31.
    Koltzenburg, G.; Bastian, E.; Steenken, S. Angew. Chem. 1988, in press.Google Scholar
  35. 32.
    Pullman, B.; Pullman, A. Quantum Biochemistiy. Interscience, New York 1963.Google Scholar
  36. 33.a)
    Behrens, G.; Hildenbrand, K.; Schulte-Frohlinde, D.; Herak, J.N. J. Chem. Soc. Perkin Trans. 2 1988, 305.Google Scholar
  37. 33.b)
    For further discussion of SO4 -• reactions with uracils see the contribution of D. Schulte-Frohlinde and K. Hildenbrand in this issue.Google Scholar
  38. 34.
    O’Neill, P., Davies, S.E. Int. J. Radial Biol. 1987, 52, 577.CrossRefGoogle Scholar
  39. 35.
    Deeble, D.J.; von Sonntag, C.; Steenken, S. unpublished results.Google Scholar
  40. 36.
    Schwarz, H.A.; Dodson, R.W. J. Phys. Chem. 1984, 88, 3643; Kläning, U.K.; Sehested, K.; Holcman, J. J. Phys. Chem. 1985, 89, 760.CrossRefGoogle Scholar
  41. 37.
    Chawla, O.P.; Fessenden, R.W. J. Phys. Chem. 1975, 79, 2693.CrossRefGoogle Scholar
  42. 38.
    For a review see Fornier de Violet, P. Rev. Chem. Intermediates 1981, 4, 121.CrossRefGoogle Scholar
  43. 39.
    Hasegawa, K.; Neta, P. J. Phys. Chem. 1978, 82, 854.CrossRefGoogle Scholar
  44. 40.
    Koltzenburg, G.; Behrens, G.; Schulte-Frohlinde, D. J. Am. Chem. Soc. 1982, 104, 7311; ibid. 1983, 105, 5168.CrossRefGoogle Scholar
  45. 41.
    Steenken, S.; Koltzenburg, G. unpublished results.Google Scholar
  46. 42.
    Unless the electron transfer was taking place in the Marcus “inverted region”.Google Scholar
  47. 43.
    For a review see Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms, and Hydroxyl Radicals (OH/O- ) in Aqueous Solution, NSRDS-NBS, in press.Google Scholar
  48. 44.
    Steenken, S. J. Chem. Soc. Faraday Trans. I 1987, 83, 113.CrossRefGoogle Scholar
  49. 45.
    Matheson, M.S.; Mulac, W.A.; Weeks, J.L.; Rabani, J. J. Phys. Chem. 1966, 70, 2092.CrossRefGoogle Scholar
  50. 46.
    Jayson, G.G.; Parsons, B.J.; Swallow, A.J. J. Chem. Soc. Faraday Trans. I 1973, 69, 1597; Pucheault, J.; Ferradini, C.; Julien, R.; Deysine, A.; Gilles, L.; Moreau, M. J. Phys. Chem. 1979, 83, 330.CrossRefGoogle Scholar
  51. 47.
    Ellison, D.H.; Salmon, G.A., Wilkinson, F. Proc. Roy. Soc. A 1972, 328, 23.CrossRefGoogle Scholar
  52. 48.
    O’Neill, P.; Schulte-Frohlinde, D. Chem. Commun. 1975, 387; Asmus, K.D.; Bonifacic, M.; Toffel, P.; O’Neill, P.; Schulte-Frohlinde, D.; Steenken, S. J. Chem. Soc. Faraday Trans. I 1978, 74, 1820.Google Scholar
  53. 49.
    see, e.g., Raghavan, N.V.; Steenken, S. J. Am. Chem. Soc. 1980, 102, 3495.CrossRefGoogle Scholar
  54. 50.
    Snook, M.E.; Hamilton, G.A. J. Am. Chem. Soc. 1974, 96, 860.CrossRefGoogle Scholar
  55. 51.
    Walling, C.; Zhao, C.; El-Taliawi, G.M. J. Org. Chem. 1983, 48, 4910; Walling, C.; El-Taliawi, G.M.; Zhao, C. ibid. 1983, 48, 4914; Walling, C.; El-Taliawi, G.M.; Amarnath, K. J. Am. Chem. Soc. 1984, 106, 7573.CrossRefGoogle Scholar
  56. 52.
    Gilbert, B.C.; Scarratt, C.J.; Thomas, C.B.; Young, J. J. Chem. Soc. Perkin Trans. 2 1987, 371.Google Scholar
  57. 53.
    Holcman, J.; Sehested, K. Nukleonika 1979, 24, 887.Google Scholar
  58. 54.
    Land, E.J.; Ebert, M. Trans. Faraday Soc. 1967, 63, 1181.CrossRefGoogle Scholar
  59. 55.
    Christensen, H. Int. J. Radiat. Phys. Chem. 1972, 4, 311; Ling Quin; Tripathi, N.R.; Schüler, R.H. Z. Naturforsch. A 1985, 40, 1026.CrossRefGoogle Scholar
  60. 56.
    Holcman, J.; Sehested, K. J. Phys. Chem. 1977, 81, 1963.CrossRefGoogle Scholar
  61. 57.
    O’Neill, P.; Davies, S.E. Int. J. Radiat. Biol. 1986, 49, 937 and references therein; Vieira, A.J.S.C.; Steenken, S. J. Am. Chem. Soc. 1987. 109, 7441.CrossRefGoogle Scholar
  62. 58.
    Vieira, A.J.S.C.; Steenken, S. J. Phys. Chem. 1987, 91, 4138.CrossRefGoogle Scholar
  63. 59.
    Steenken, S.; Davies, M.J.; Gilbert. B.C. J. Chem. Soc. Perkin Trans. 2 1986, 1003.Google Scholar
  64. 60.
    It has been pointed out that single electron “shifts” may be important in overall heterolytic reactions (see Pross, A. Acc. Chem. Res. 1985. 18, 212 and Shaik, S.S. Progr. Phys. Org. Chem. 1985, 15, 197).CrossRefGoogle Scholar
  65. 61.
    Littler, J.S. in: Essays in Free Radical Chemistry. J. Chem. Soc. Special Publication No. 24. London 1970, p. 383.Google Scholar
  66. 62.
    Ramaraj, R.; Steenken, S. unpublished material.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • S. Steenken
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheimFederal Republic of Germany

Personalised recommendations