Synthetic Applications of Substitution and Addition Reactions Promoted by Cerium(IV) Ammonium Nitrate

  • Enrico Baciocchi
  • Renzo Ruzziconi
Part of the NATO ASI Series book series (ASIC, volume 260)


Cerium(IV) salts, and expecially cerium(IV) ammonium nitrate, (CAN), are very efficient in promoting a highly selective side-chain functionalization of methylbenzenes. With CAN the process leads to aromatic aldehydes and benzyl derivatives, depending on the reaction conditions. In di- and polymethylbenzenes selective functionalization of the methyl group with electron donating substituents at the ortho and (or) para position is possible.

Reactivity can significantly be increased by adding Br-, at the expense, however, of selectivity, which is significantly reduced since the attacking species is now Br*. Both selectivity and reactivity are instead very high in the photochemical reaction of CAN with methylbenzenes in MeCN leading to benzyl nitrates; the reacting species is NO3•, formed by photolysis of CAN. The reaction can be extended to cycloalkanes and moreover, if carried out in the presence of dioxygen, made catalytic in CAN.

CAN in AcOH is also a very useful reactant for ring functionalization (formation of phenyl acetates or quinones) of aromatic compounds. In methylaromatics nuclear attack can be the favored process in the presence of electron donating substituents meta to the methyl group. With alkenylaromatic compounds CAN leads to 1,2-dinitrate adducts in good yield. Under irradiation the reaction becomes much faster and can also be extended to unactivated alkenes.

Reaction of CAN with carbonyl compounds forms electrophilic α-keto carbon radicals which can promote homolytic aromatic substitutions or add to alkenes to give addition products where the formation of a new carbon carbon bond is accompanied by the introduction of the nitrate group, which can undergo further functionalization. Among the homolytic aromatic substitutions, malonylation is very useful expecially with heteroaromatic compounds. The addition reactions to alkenes (particularly, conjugated dienes, styrenes, vinyl acetates) allow the synthesis of a variety of compounds (vinylcyclopropanes, 1,4-disubstituted trans-2-butenes, 1,4-dicarbonyl compounds, diydrofurans and furans) to be carried out.


Radical Cation Carbonyl Compound Vinyl Acetate Nitrate Group Substrate Molar Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.L. Ho, Synthesis, 347 (1973).Google Scholar
  2. 2.
    H.B. Kagan, J.L. Namy, Tetrahedron, 42, 6573 (1986).CrossRefGoogle Scholar
  3. 3.
    E. Baciocchi, A. Dalla Cort, L. Eberson, L. Mandolini, C. Rol, J.Org.Chem., 51, 4544 (1986).CrossRefGoogle Scholar
  4. 4.
    E. Baciocchi, R. Ruzziconi, J.Chem.Soc.Chem.Commun 445 (1984).Google Scholar
  5. 5.
    E. Baciocchi, C. Rol, L. Mandolini, J.Am.Chem.Soc. 102, 7597 (1980).CrossRefGoogle Scholar
  6. 6.
    E. Baciocchi, C. Rol, L. Mandolini, Tetrahedron Lett., 3343 (1976).Google Scholar
  7. 7.
    E. Baciocchi, C. Rol, G.V. Sebastiani, A. Zampini, J.Chem.Soc. Chem.Commun., 1045 (1982).Google Scholar
  8. 8.
    E. Baciocchi, C. Rol, G.V. Sebastiani, Gazz.Chim.Ital., in press.Google Scholar
  9. 9.
    E. Baciocchi, L. Eberson, C. Rol, J.Org.Chem., 47, 5106 (1982).CrossRefGoogle Scholar
  10. 10.
    E. Baciocchi, L. Mandolini, C. Rol, J.Org.Chem., 42, 3682 (1977).CrossRefGoogle Scholar
  11. 11.
    W. Trahanovsky, L. Brewster Young, J.Org.Chem., 31, 2033 (1965).CrossRefGoogle Scholar
  12. 12.
    L. Syper, Tetrahedron Lett. 4493 (1966).Google Scholar
  13. 13.
    L.A. Dust, E.W. Gill, J.Chem.Soc.(C), 1630 (1970).Google Scholar
  14. 14.
    T.W. Martin, A.Fenshall, J.M.Burk, R.W. Glass, unpublished work quoted by T.W. Martin, J.M. Burk, A. Henshall, J.Am.Chem.Soc., 88, 1097 (1966)CrossRefGoogle Scholar
  15. 15.
    R.M. Dessau, S. Shih, E.I. Heiba, J.Am.Chem.Soc., 92, 412 (1970).CrossRefGoogle Scholar
  16. 16.
    W. T. Dixon, D. Murphy, J.Chem.Soc.Perkin Trans. II, 1823 (1976).Google Scholar
  17. 17.
    D.N. Ramakrishna Rao, M.C.R. Symons, J.Chem.Soc.Perkin Trans.II, 991 (1985).Google Scholar
  18. 18.
    L.K. Sydnes, S.H. Hansen, I.C. Burkow, L.J. Saethre, Tetrahedron, 41, 5205 (1985).CrossRefGoogle Scholar
  19. 19.
    A. Dalla Cort, A. La Barbera, L. Mandolini, J.Chem.Res.(S), 44 (1983).Google Scholar
  20. 20.
    S. Torii, H. Tanaka, T. Inokuchi, S. Nakane, M. Kada, N. Sailo, T. Sirakawa, J.Org.Chem., 47, 1647 (1982).CrossRefGoogle Scholar
  21. 21.
    A. Dalla Cort, L. Mandolini, Gazz.Chim.Ital., 114, 283 (1984).Google Scholar
  22. 22.
    E. Baciocchi, S. Mei, C. Rol, L. Mandolini, J.Org.Chem., 43, 2919 (1978).CrossRefGoogle Scholar
  23. 23.
    E. Baciocchi, C. Rol, G.V. Sebastiani, unpublished results.Google Scholar
  24. 24.
    E. Baciocchi, C. Rol, G.V. Sebastiani, Gazz.Chim.Ital., 112, 513 (1982).Google Scholar
  25. 25.
    M.C.R. Symons, L. Harris, J.Chem.Res.(S), 268 1982.Google Scholar
  26. 26.
    E. Baciocchi, C. Rol, G.V. Sebastiani, J.Chem.Res.(S), 232 (1983).Google Scholar
  27. 27.
    M. Marocco, G. Brilmyer, J.Org.Chem., 48, 1487 (1983).CrossRefGoogle Scholar
  28. 28.
    L. Eberson, J.Am.Chem.Soc., 89, 4669 (1967).CrossRefGoogle Scholar
  29. 29.
    R. Palombari, C. Rol, G.V. Sebastiani, Gazz.Chim.Ital., 116, 87 (1986).Google Scholar
  30. 30.
    M. Periasamy, V. Vivekananda Bhatt, Synthesis, 330 (1977).Google Scholar
  31. 31.
    J. Skarzewski, Tetrahedron, 40, 4997 (1984).CrossRefGoogle Scholar
  32. 32.
    L. Syper, K. Kloc, J. Mlochowski, Tetrahedron, 36, 123 (1980).CrossRefGoogle Scholar
  33. 33.
    E. Baciocchi, C. Rol, G.V. Sebastiani, B. Serena, J.Chem.Res.(S), 24 (1984).Google Scholar
  34. 34.
    E. Baciocchi, M. Crescenzi, to be published.Google Scholar
  35. 35.
    S. Dinkturk, J.H. Ridd, J.Chem.Soc.Perkin Trans.2, 961, 965 (1982).CrossRefGoogle Scholar
  36. 36.
    E. Baciocchi, C. Rol, G.V. Sebastiani, B. Serena, Tetrahedron Lett., 1945 (1984).Google Scholar
  37. 37.
    E. Baciocchi, T. Del Giacco, C. Rol, G.V. Sebastiani, Tetrahedron Lett., 1941 (1987).Google Scholar
  38. 38.
    E. Baciocchi, T. Del Giacco, C. Rol, G.V. Sebastiani, Tetrahedron Lett., 541 (1985).Google Scholar
  39. 39.
    E. Baciocchi, T. Del Giacco, S. Murgia, G.V. Sebastiani, J.Chem.Soc.Chem.Commun., 1246 (1987).Google Scholar
  40. 40.
    E. Baciocchi, T. Del Giacco, C. Rol, G.V. Sebastiani, Tetrahedron Lett. 3353 (1985).Google Scholar
  41. 41.
    R.A. Sheldon, J.K. Kochi, J.Am.Chem.Soc., 90, 668 (1968).CrossRefGoogle Scholar
  42. 42.
    For pioneering work in the field see (a) A.I. Heiba, R.M. Dessau, J.Am.Chem.Soc. 93, 524 (1971)CrossRefGoogle Scholar
  43. 42.(b)
    E.I. Heiba, R.M. Dessau, J.Am.Chem.Soc., 93, 995 (1971)CrossRefGoogle Scholar
  44. 42.(c)
    E.I. Heiba, R.M. Dessau, W.J. Koehl, Jr. J.Am.Chem.Soc., 91, 138 (1969).CrossRefGoogle Scholar
  45. 43.
    M.E. Kurz, Tsu-yn R. Chen, J.Org.Chem., 43, 279 (1978).CrossRefGoogle Scholar
  46. 44.
    M.E. Kurz, V. Baru, P. Nhi Nguyen, J.Org.Chem., 49, 1603 (1984).CrossRefGoogle Scholar
  47. 45.
    C. Gardrat, Bull.Soc.Chim.Belg. 93, 397 (1984).Google Scholar
  48. 46.
    M.E. Kurz, P. Ngoviwatachai, T. Tantrarant, J.Org.Chem., 46, 4668 (1981).CrossRefGoogle Scholar
  49. 47.
    M.E. Kurz, P. Ngoviwatachai, J.Org.Chem., 46, 4672 (1981).CrossRefGoogle Scholar
  50. 48.
    E. Baciocchi, D. Dell’Aira, R. Ruzziconi, Tetrahedron Lett., 2763 (1986).Google Scholar
  51. 49.
    E. Baciocchi, R. Ruzziconi, unpublished work.Google Scholar
  52. 50.
    T. Sugiyama, Bull.Chem.Soc.Jpn. 54, 2847 (1981).CrossRefGoogle Scholar
  53. 51.
    H. Kottmann, J. Skarzewski, F. Effenberger, Synthesis, 797 (1987).Google Scholar
  54. 52.
    E. Baciocchi, T. Del Giacco, S.M. Murgia, G.V. Sebastiani, Tetrahedron, submitted for pubblication.Google Scholar
  55. 53.(a)
    E.J. Corey, A.K. Ghosh, Tetrahedron Lett., 175 (1987)Google Scholar
  56. 53.(b)
    R. Mohan, S.A. Kates, M.A. Dombroski, B.B. Snider, Tetrahedron Lett., 845 (1987)Google Scholar
  57. 53.(c)
    B.B. Snider, R. Mohan, S.A. Kates, Tetrahedron Lett., 841 (1987)Google Scholar
  58. 53.(d)
    W.E. Fristad, J.R. Peterson, A.B. Ernst, J.Org.Chem., 50, 3143 (1985)CrossRefGoogle Scholar
  59. 53.(e)
    W. Fristad, S. Hershberger, J.Org.Chem. 50, 1026 (1985)CrossRefGoogle Scholar
  60. 53.(f)
    E.J.Corey, A. W. Gross, Tetrahedron Lett., 4291 (1985)Google Scholar
  61. 53.(g)
    E.J. Corey, M. Kang, J.Am.Chem.Soc., 106, 5384 (1984).CrossRefGoogle Scholar
  62. 54.
    E. Baciocchi, R. Ruzziconi, J.Org.Chem. 51, 1645 (1986).CrossRefGoogle Scholar
  63. 55.
    E. Baciocchi, R. Ruzziconi, Gazz.Chim.Ital., 116, 671 (1986).Google Scholar
  64. 56.
    E. Baciocchi, G. Civitarese, R. Ruzziconi, Tetrahedron Lett., 5357 (1987).Google Scholar
  65. 57.
    R.M. Dessau, E.I. Heiba, J.Org.Chem., 39, 3457 (1974).CrossRefGoogle Scholar
  66. 58.
    E. Baciocchi, R. Ruzziconi, unpublished work.Google Scholar
  67. 59.
    E. Baciocchi, R. Ruzziconi, Synthetic Commun., in press.Google Scholar
  68. 60.
    M. Miyashita, T. Kumazowa, A. Yoshikoshi, J.Chem.Soc.Chem.Commun., 362 (1978).Google Scholar
  69. 61.
    M. G. Vinogradov, M.S. Pogosyan, A.Ya. Shteinshneider, G.I. Nikishin, Izv. Ak.Nauk. SSSR,Ser.Khim 2077 (1981).Google Scholar
  70. 62.
    F.A. Cotton, G. Wilkinson “Advanced Inorganic Chemistry”, Interscience, New York, 1966 pp 1061–1064.Google Scholar
  71. 63.
    M. Mendelsohn, E.M. Arnett, H. Freiser, J.Phys.Chem., 64, 600 (1960).CrossRefGoogle Scholar
  72. 64.
    S. Venkatakrishnan, M. Santappa, Z.Phys.Chem. (Munich), 16, 73 (1958).Google Scholar
  73. 65.
    J.K. Kochi in “Free Radicals“; J.K. Kochi Ed.; Wiley-Interscience: New York, 1973, Vol. I, Chapter 11, p. 656.Google Scholar
  74. 66.
    E. Baciocchi, R. Ruzziconi, unpublished work.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Enrico Baciocchi
    • 1
    • 2
  • Renzo Ruzziconi
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Rome “La Sapienza”RomaItaly
  2. 2.Department of ChemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations