Hydrothermal Alteration of the Oceanic Crust

  • Francis Albarede
  • Annie Michard
Part of the NATO ASI Series book series (ASIC, volume 258)


Recycling of the oceanic crust is potentially a dominant process in the formation of OIB mantle sources (Hofmann et al. 1978; 1986) and is a significant contribution to the flux of material between the continent and the depleted mantle (Albarede and Michard, 1986). The subducted oceanic crust is expected to comprise widely different end-members: continent-derived sediments of which the abyssal clays are an important fraction, metalliferous ridge-flank sediments, and the magmatic layers (basalts, dolerites, gabbros,…). First, these magmatic layers interact at high temperature with the overlying seawater in the hydrothermal systems recently discovered along most ridge segments around the world (black smokers). SiO2 geothermobarometry of the vent solutions suggests that the last major chemical exchanges between hydrothermal solutions and the plutonic part of the oceanic crust take place 0.5–3.5 km below the seafloor, a depth that recent seismic data correlate with the top of an axial magma chamber. In addition, seawater reacts at low temperature with the uppermost basaltic flows and dikes, giving rise to the alteration most commonly studied on dredge samples and DSDP cores.


Continental Crust Oceanic Crust Hydrothermal Alteration Hydrothermal Solution Black Smoker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarede F. et al. (1981) Earth Planet. Sci. Lett. 55, 229–236.CrossRefGoogle Scholar
  2. Albarede F. and Michard A. (1986) Chem. Geol. 57, 1–15.CrossRefGoogle Scholar
  3. Alt, J.C. and Emmermann, R. (1985) Init. Rept. DSDP 83, 249–262Google Scholar
  4. Anderson R.N. et al. (1983) Nature 300, 589–594.CrossRefGoogle Scholar
  5. Aumento F., (1971) Earth Planet. Sci. Lett. 11, 90–94.CrossRefGoogle Scholar
  6. Bloch, S. (1980) Geochim. Cosmochim. Acta 44, 373–377.CrossRefGoogle Scholar
  7. Chen, J.H. et al. (1986) Geochim. Cosmochim. Acta 50P, 2467–2479.CrossRefGoogle Scholar
  8. Dasch, J.E. (1981) Geol. Soc. Amer. Mem. 154, 199–208.Google Scholar
  9. Edmond, et al. (1979) Earth Planet. Sci. Lett. 46, 1–18.CrossRefGoogle Scholar
  10. Gill, J. (1981)Oroaenic Andesites and Plate Tectonics. SpringerGoogle Scholar
  11. Grinenko, V.A. Et al. (1975) Geochem. Intern. 12, 132–137.Google Scholar
  12. Hart, S.R. and Staudigel, H. (1982) Earth Planet. Sci. Lett. 58. 202–212.CrossRefGoogle Scholar
  13. Hofmann, A.W. et al. (1978) Carnegie Inst. Wash. Yb. 79, 477–483.Google Scholar
  14. Hofmann, A.W. et al. (1986) Earth Planet. Sci. Lett. 79, 33–45.CrossRefGoogle Scholar
  15. Michard, A., et al. (1983) Nature 303, 795–797.CrossRefGoogle Scholar
  16. Michard A. and Albarede F. (1985) Chem. Geol. 55, 51–60.CrossRefGoogle Scholar
  17. Michard A., et al. (1986) Earth Planet. Sci. Lett. 78, 104–114.CrossRefGoogle Scholar
  18. Ohmoto H. et al. (1983) Econ. Geol. Mem. 5, 570–604.Google Scholar
  19. Rye, R.O. et al. (1984) J. Vole. Geotherm. Res. 23, 109–123.CrossRefGoogle Scholar
  20. Shanks, W.C. and Seyfried W.E. (1985) EOS 66, 928–929.Google Scholar
  21. Sleep, N.H. and Wolery T.J. (1978) J. Geophys. Res. 83, 5913–5922.CrossRefGoogle Scholar
  22. Sleep, N.H., et al. (1985) EOS 66, 920.Google Scholar
  23. Ueda, A. and Sakai, H. (1984) Geochim. Cosmochim. Acta 48, 1837–1848.CrossRefGoogle Scholar
  24. Welhan J.A. and Craig, H. (1983) in Hydrothermal Processes at Seafloor Spreading Center. Rona P. et al. eds, Plenum, NY 391–409Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Francis Albarede
    • 1
  • Annie Michard
    • 1
  1. 1.Centre de Recherches Petrographiques et GeochimiquesEcole National e Superieure de GeologieVandoeuvre-les Nancy CedexFrance

Personalised recommendations