Crust Mantle Recycling: Inputs and Outputs

  • Malcolm T. McCulloch
Part of the NATO ASI Series book series (ASIC, volume 258)


Geochemical and isotopic compositions of continental derived materials that are available as inputs into modern subduction zones are assessed. Oceanic sediments from fore-arc, back-arc and continental margins have a wide range of isotopic and chemical compositions reflecting a variety of source terrains. Intra-oceanic forearc sediments have compositons similar to adjacent arc volcanics while sediments deposited in the passive margin of continental shelves have Proterozoic and in some cases Archean provenances. This indicates that a wide spectrum of materials are available for incorporation into modern and also presumeably ancient subduction zones. Studies of blue-schist and associated eclogite terrains indicate sediment subduction to depths of ~20km to 60 km, but direct constraints on the quantity of continental derived sediments subducted into the deep mantle remains elusive.

An attempt is also made to identify the outputs of crust mantle recycling, that is magmas derived from mantle sources containing components of ancient recycled sediments. A select class of ultra-potassic magmas, the olivine and leucite bearing lamproites, appear to have the appropriate geochemical signatures but their source regions may be located in the lower subcontinental lithosphere rather than the upper mantle.


Continental Crust Subduction Zone Oceanic Crust Mantle Wedge Oceanic Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong R.L. 1968. A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev. Geophys. 6, 175–199.CrossRefGoogle Scholar
  2. Davidson J.P. 1985. Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci. Lett. 72, 163–174.CrossRefGoogle Scholar
  3. Davidson J.P. 1986. Isotopic and geochemical constraints on the pedogenesis of subduction-related lavas from Martinique, Lesser Antilles. J. Geophys. Res. 91, 5943–5962.CrossRefGoogle Scholar
  4. DePaolo D. 1980. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta. 44, 1185–1196.CrossRefGoogle Scholar
  5. Fraser K.J., HAWKESWORTH C.J., ERLANK A.J., MITCHELL R.H. & Scott-Smith B.H. 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett. 76, 57–70.CrossRefGoogle Scholar
  6. Gill J.B. 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin.Google Scholar
  7. Goldstein S.L. & O’Nions R.K. 1981. Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits. Nature 292, 324–327.CrossRefGoogle Scholar
  8. Gregory R.T. & Taylor H.P. Jr. 1981. An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for ∂18O buffering of the oceans by deep (>5km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. 86, 2737–2755.CrossRefGoogle Scholar
  9. Hawkesworth C.J., O’Nions R.K. & Arculus R.J. 1979. Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci. Lett. 45, 237–248.CrossRefGoogle Scholar
  10. Houseman G.A., McKenzie D.P. & Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 86, 6115–6132.CrossRefGoogle Scholar
  11. Jaques A.L., Lewis J.D., Smith C.B., Gregory G.P., Ferguson J., Chappell B.W. & McCulloch M.T. 1984. The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In Kornprobst J. ed. Kimberlites II: The mantle and crust-mantle relationships. pp 225–254. Elsevier, Amsterdam.Google Scholar
  12. Karig D.E. & Kay R.W. 1981. Fate of sediments on the descending plate at convergent margins. Philos. Trans. R. Soc. London. A. 301, 223–251.Google Scholar
  13. Kay R.W. 1980. Volcanic arc magmas: Implications of a melting-mixing model for element recycling in the crust-upper mantle system. Journ. Geol. 88, 497–522.CrossRefGoogle Scholar
  14. McCulloch M.T. and Wasserburg G.J. 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200,1003–1011.CrossRefGoogle Scholar
  15. McCulloch M.T. & Perfit M.R. 1981. 143Nd/144Nd, 87Sr/86Sr and trace-element constraints on the pedogenesis of Aleutian island arc magmas. Earth Planet. Sci. Lett. 56, 167–179.CrossRefGoogle Scholar
  16. McCulloch M.T., Jaques A.L., Nelson D.R. & Lewis J.D. 1983. Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302, 400–403.CrossRefGoogle Scholar
  17. McCulloch M.T., Compston W., Chivas A., & Abbot M.,1984. Neodymium, strontium, lead and oxygen isotopic and trace element constraints on magma genesis, on the Banda island-arc, Wetar, 27th I.G.C. (Moscow), 11, 344.Google Scholar
  18. McDonough W.F. & McCulloch M.T. 1987. Isotopic heterogeneity in the southeast Australian subcontinental lithospheric mantle. Earth Planet. Sci. Lett, (in press).Google Scholar
  19. McKenzie D. & O’Nions R.K. 1983. Mantle reservoirs and ocean island basalts. Nature 301, 229–231.CrossRefGoogle Scholar
  20. McLennan S.M., McCulloch M.T. & Taylor S.R. 1985. Trace element geochemistry of modern deep sea turbidite sands. EOS 66, 1136.Google Scholar
  21. McLennan S.M. 1987. Recycling of continental crust. Pure and Applied Geophysics (in press).Google Scholar
  22. Morris J.D. & Hart S.R. 1983. Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta. 47, 2015–2030.CrossRefGoogle Scholar
  23. Muehlenbachs K. & Clayton R.N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res. 81,4365–4369.CrossRefGoogle Scholar
  24. Nakamura, E., Campbell, I.H., & Sun, S.-S. 1985. The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature 316, 55–58.CrossRefGoogle Scholar
  25. Nelson D.R., McCulloch M.T. & Sun S.-S. 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim. Cosmochim. Acta. 50, 231–245.CrossRefGoogle Scholar
  26. Nelson D.R. & McCulloch M.T. 1987. Enriched mantle components and mantle recycling of sediments. Proceed. 4th Int. Kim. Conf. (in press)Google Scholar
  27. Perfit M. & McCulloch M.T., 1982. Trace element, Nd-Sr isotope geochemistry of eclogites and blueschists from the Hispaniola-Peurto Rico Subduction Zone. Transactions American Geophys. Union 63, 1133.Google Scholar
  28. Perfit M., McCulloch M.T. & Johnson R. 1983. Isotopic and trace element differences in late Cainozoic volcanic rocks from West Melanesia. Geol. Soc. Aust. 6th Geol. Conv. 9, 144Google Scholar
  29. Perfit M. & Kay R.W. 1986. Comment on “Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure” by J.D. Morris and S. R. Hart Geochim. Cosmochim. Acta. 50, 477–482.CrossRefGoogle Scholar
  30. Ringwood A.E. 1982. Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt pedogenesis, and crustal evolution. J. Geol. 90, 611–643.CrossRefGoogle Scholar
  31. Sherton J.W. & England R.N. 1980. Highly potassic mafic dykes from Antarctica. J. Geol. Soc. Aust. 30, 295–304.Google Scholar
  32. Stosch H.-G. & Lugmair G.W. 1986. Trace element and Sr and Nd isotope geochemistry of peridotite xenoiths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere. Earth Planet Sci. Lett. 80, 281–298.CrossRefGoogle Scholar
  33. Taylor S.R. & McLennan S.M. 1985. The Continental Crust: Its composition and evolution. Blackwell, Oxford, U.K.Google Scholar
  34. Tera F., Brown L., Morris J., Sacks I.S., Klein J. & Middleton R. 1986. Sediment incorporation in island arc magmas: Inferences from Geochim. Cosmochim. Acta. 50, 535–550.Google Scholar
  35. Valloni R. & Maynard J.B. 1981. Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sedimentology 28, 75.CrossRefGoogle Scholar
  36. Vollmer R., Ogden P., Schilling J.-G., Kingsley R.H. & Waggoner D.G. 1984. Nd and Sr isotopes in ultrapotassic volcanic rocks from the Leucite Hills, Wyoming. Contrib. Mineral. Petrol. 87,359–368.CrossRefGoogle Scholar
  37. White W.M. & Hofmann A.W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825.CrossRefGoogle Scholar
  38. White W.M., Dupre B. & Vidal P. 1985. Isotope and trace-element chemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochim. Cosmochim. Acta. 49, 1875–1886.CrossRefGoogle Scholar
  39. White W.M. & Dupre B. 1986. Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints. J. Geophys. Res. 91, 5297–5941.Google Scholar
  40. Wortel M.J.R. & Cloetingh S.A.P. 1985. Accretion and lateral variations in tectonic structure along the Peru-Chile Trench. Tectonophysics 112, 443–462.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Malcolm T. McCulloch
    • 1
  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations