Competition between ODD- and Even-Electron Processes

  • Joseph San Filippo
Part of the NATO ASI Series book series (ASIC, volume 257)


The competition between odd- and even-electron processes has been generally recognized in chemistry for many years. One of our earlier interests in this area arose in the study of the reactions of the superoxide radical anion.


Alkyl Halide Superoxide Radical Anion Solvent Cage Potassium Compound Stereochemical Consequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chern, C.-I.; DiCosimo, R.; DeJesus, R.; and San Filippo, J. Jr., J. Am. Chem. Soc., 1978, 100, 7317.CrossRefGoogle Scholar
  2. 2.
    Bock, P.L.; Boschetto, D.J.; Rasmussen, J.R.; Demers, J.P.; and Whitesides, G.M., J. Am. Chem. Soc., 1974, 96, 2814.CrossRefGoogle Scholar
  3. 3.
    Bradley, J.S.; Connor, D.E.; Dolphin, D.E.; Labinger, J.A.; and Osborn, J.A., J. Am. Chem. Soc., 1972, 94, 4043.CrossRefGoogle Scholar
  4. 4.
    San Filippo, J. Jr.; Silbermann, J.; and Fagan, P.JU., J. Am. Chem. Soc., 1978, 100, 4834.CrossRefGoogle Scholar
  5. 5. (a)
    Greene, F.D.; Berwick, M.A.; Stowell, J.C., J. Am. Chem. Soc., 1970, 92, 867. Kopecky, K.R.; Gillan, T., Can. J. Chem. Soc., 1969, 47, 2371.CrossRefGoogle Scholar
  6. (b).
    It is, of course, well known that the degree of association of organolithium reagents is strongly solvent dependent: the presence of basic solvents in an organolithium reagent solution generally predisposes the aggregate toward dissociation into smaller and presumably better solvated fragments (cf. Panek, E.J. and Whitesides, G.M., J. Am. Chem. Soc., 1972, 94, 8768).Google Scholar
  7. 6.
    Jensen, F.R. and Rodgers, J.E., J. Am. Chem. Soc., 1968, 90, 5793.CrossRefGoogle Scholar
  8. 7.
    Cf. Griller, D. and Ingold, K.V., Acc. Chem. Res., 1980, 13, 317.CrossRefGoogle Scholar
  9. 8. (a)
    Garst, J.F. and Smith, C.D., J. Am. Chem. Soc., 1976, 98, 1520 and references therein.CrossRefGoogle Scholar
  10. (b).
    Wilt, J.W. in “Free Radicals”; Kochi, J.K., ed.; Wiley-Interscience: New York, 1973; Vol. 1, Chapter 8.Google Scholar
  11. 9.
    Noyes, R.M., Prog. React. Kinet., 1969, 1, 129.Google Scholar
  12. 10.
    Ashby, E.C. and DePriest, R., J. Am. Chem. Soc., 1982, 104, 6144.CrossRefGoogle Scholar
  13. 11.
    The normalized yields of 5 and 6 (Table I) are, respectively, 88% and 12% (see ref 10) ~Since-50% of the total yield of coupling product (i.e. 5 + 6) must occur (according to ref 10) within the same solvent cage as the rate-limiting electron-transfer step, it follows (assuming all or less than all of trimethyl (2-octyl) tin is also derived in this initial solvent cage) that a minimum of (50–12)/88 or 33% of trimethyl (2-octyl) tin must also be formed in this initial solvent cage.Google Scholar
  14. 12.
    Kitching, W.; Olszowy, H.A.; and Harvey, K., J. Org. Chem., 1982, 47, 1893.CrossRefGoogle Scholar
  15. 13.
    Newcomb, M. and Courtney, A.R., J. Org. Chem., 1980, 45, 1707.CrossRefGoogle Scholar
  16. 14.
    Bock, P.L. and Whitesides, G.M., J. Am. Chem. Soc., 1974, 96, 2826.CrossRefGoogle Scholar
  17. 15.
    Beckwith, A.L.J.; Blair, I. and Philipou, G., J. Am. Chem. Soc., 1974, 96, 1613 and references therein.CrossRefGoogle Scholar
  18. 16.
    Ashby, E.C.; Su, W.-Y.; and Pham, T.N., Organomet., 1985, 4, 1493.CrossRefGoogle Scholar
  19. 17.
    Kuivila, H.G. and Alnajjar, M.S., J. Am. Chem. Soc., 1982, 104, 6146.CrossRefGoogle Scholar
  20. 18.
    Garst, J.F. and Hines, J.B., Jr., J. Am. Chem. Soc., 1984, 106, 6443CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Joseph San Filippo
    • 1
  1. 1.Department of ChemistryRutgers UniversityNew BrunswickUSA

Personalised recommendations