Oxidatively Induced Substitution Reactions of Transition Metal Organometallic Compounds

  • John C. Kotz
Part of the NATO ASI Series book series (ASIC, volume 257)


Oxidation, both chemical and anodic, can induce substitutions, bond-breaking and making, rearrangements, and coupling reactions of organometallic compounds. In some cases the processes are catalytic. This article reviews the recent literature on oxidatively induced substitutions and briefly describes a novel case of induced halogen substitution in bis(cydopentadienyl)molybdenum dihalides (Cp2MoX2) by solvent as well as the importance of the 17-electron radical cation [Cp2MoX2]+. as an intermediate in the catalytic oxidation of tripheny1 phosphine.


Substitution Reaction Dalton Trans Substitution Product Reductive Elimination Metal Carbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kotz, J.C. in Topics in Organic Electrochemistry, Fry, A.J.; Britton, W. E. (eds.) Plenum Press, New York, 1986.Google Scholar
  2. 2.
    Chanon, M. Acc. Chem. Res. 1987, 20., 214.CrossRefGoogle Scholar
  3. 3.
    The following references refer to examples of anodically induced reactions that are not covered in the present article: Isomerization Google Scholar
  4. (a).
    Bond, A.M.; Col ton, R.; Kevekordes, J. E.; Panagiotidou, P. Inorg. Chem. 1987, 26, 1430.CrossRefGoogle Scholar
  5. (b).
    Vallat, A.; Person, M.; Roullier, L.; Laviron, E. Inorg. Chem. 1987, 26, 332.CrossRefGoogle Scholar
  6. (c).
    Connelly, N.G.; Raven, S. J.; Carriedo, G. A.; Riera, V. J. Chem. Soc. Chem. Commun 1986, 992.Google Scholar
  7. Rearrangement: Samuel, E.G.; Kochi, J.K. J. Am, Chem. Soc. 1986, 108, 4790.CrossRefGoogle Scholar
  8. Reactions of coordinated ligands: Freeman, M.J.; Orpen, A.G.; Connelly, N.G.; Raven, S.J. J. Chem. Soc. Delton Trans., 1985, 2283.Google Scholar
  9. 4.
    Other reviews on oxidatively induced reactions areGoogle Scholar
  10. (a).
    Daub, G. Prog, Inorg Chem. 1977, 22., 409.CrossRefGoogle Scholar
  11. (b).
    Halpern, J. Angew Chem, Int. Ed. Engl. 1985, 24, 274.CrossRefGoogle Scholar
  12. 5.
    Doxsee, K.M.; Grubbs, R.H.; Anson, F. C. J. Am. Chem. Soc. 1984, 106, 7819.CrossRefGoogle Scholar
  13. 6. (a)
    Narayanan, B. A.; Amatore, C.; Kochi, J.K. Organometal1ics 1987, 6, 129.CrossRefGoogle Scholar
  14. (b).
    Lane, G. A.; Geiger, W. E.; Connelly, N.G. J. Am. Chem. Soc. 1987, 109, 402.CrossRefGoogle Scholar
  15. (c).
    Pearson, A. J.; Chen, Y-S.; Daroux, M.L.; Tanaka, A.A.; Zettler, M. J. Chem. Soc. Chem. Commun. 1987, 155.Google Scholar
  16. (d).
    Richmond, M.G.; Kochi, J.K. Inorg. Chem. 1986, 25., 656.CrossRefGoogle Scholar
  17. 7. (a)
    Connelly, N.G.; Demidowicz, Z.; Kelly, R.L. J. Chem. Soc. Dal ton Trans. 1975, 2335.Google Scholar
  18. (b).
    Degrand, C.; RadeckL-Sudre, A.; Besancon, J. Organcmetallics 1982 1, 1311.CrossRefGoogle Scholar
  19. (c).
    Rieke, R.D.; Tucker, I.; Milligan, S.N.; Wright, D. R.; Willeford, B.R.; Radonovich, L.J.; Eyring, M.W. Organomegalies 1982, 1 938.CrossRefGoogle Scholar
  20. 8.
    Domaille, P. J.; Ittel, S.D.; Jesson, J. P.; Sweigart, D. A. J. Qrganemetal. Chem. 1980, 202, 191.CrossRefGoogle Scholar
  21. 9.
    Relevant to this is a paper describing the substitution of arene in [(arene)FeCp]+ by PR3 by reductive electron transfer catalysis. Darchen, A. J. Chem. Soc. Chem. Commun. 1983, 768.Google Scholar
  22. 10.
    In this connection, it is worth noting that electrochemical observations suggesting solvent interactions with the ligands in metal carbonyls have been reported: Chadwick, I.; Diaz, C.; Gonzalez, G.; Santa Ana, M. A.; Yutronic, N. J. Chem. Soc. Dal ton Trans. 1986, 1867.Google Scholar
  23. 11. (a)
    Hershberger, J.W.; Amatore, C.; Kochi, J.K. J. Qrganometal. Chem. 1983, 250. 345; and references therein.CrossRefGoogle Scholar
  24. (b).
    Hershberger, J.W.; Klinger, R.J.; Kochi, J.K. J. Am. Chem. Soc. 1983, 105, 61.CrossRefGoogle Scholar
  25. (c).
    Zizelman, P.M.; Amatore, C.; Kochi, J.K. J. Am. Chem. Soc. 1984, 106, 3771.CrossRefGoogle Scholar
  26. 12. (a)
    Shi, Q-Z.; Richmond, T.G.; Trogler, W.C.; Basolo, F. J. Am. Chem. Soc. 1984, 106, 71.CrossRefGoogle Scholar
  27. (b).
    Kowalski, R.M.; Basolo, Trogler, w. c.; Gadrige, H.W.; Newbound, T.D.; Ernst, R.D. ibid., 1987, 109, 4860.Google Scholar
  28. 13.
    Rerek, M. E.; Basolo, F. J. Am. Chem. Soc. 1984,. l06, 5908; and references therein.CrossRefGoogle Scholar
  29. 14.
    Associatively activated substi tution of 17-electron molecules and ions contrasts with 18-electron metal carbonyls such as Ni(CO)4, where the evidence favors an Id mechanism for CO substitution. Atwood, J. D. Inorgantic and oraganomatallic Reaction mechanisms, Brooks/Cole Publishing Company, Monterey, CA, 1985, pp. 106–118.Google Scholar
  30. 15. (a)
    Broadley, K.; Connelly, N.G.; Geiger, W. E. J. Chem. Soc. Dal ton Trans. 1983, 121.Google Scholar
  31. (b).
    Connelly, N.G.; Raven, S.J. ibid. 1986, 1613.Google Scholar
  32. (c).
    Gennett, T.; Grzeszczyk, E.; Jefferson, A.; Sidur, K.M. Inorg. Chem. 1987, 26 1856.CrossRefGoogle Scholar
  33. 16.
    Therien, M.J.; Ni, C-L.; Anson, F.C.; Osteryoung, J.G.; Trogler, W.C J. Am. Chem. Sec. 1986, 108, 4037CrossRefGoogle Scholar
  34. 17.
    Bagchi, R.N.; Bond, A.M.; Brain, G.; Colton, R.; Henderson, T.L.E.; Kevekordes, J. E. Organometallics 1984, 3, 4.CrossRefGoogle Scholar
  35. 18. (a)
    Moulton, R.; Weidman, T.W.; Vollhardt, K. P. C.; Bard, A.J. Inory. Chem. 1986, 25., 1846.CrossRefGoogle Scholar
  36. (b).
    Lacombe, D. A.; Anderson, J. E.; Kadish, K.M. Inorg. Chem. 1986, 25., 2074.CrossRefGoogle Scholar
  37. (c).
    Kadish, K.M.; Lacombe, D.A.; Anderson, J. E. Inorg. Chem. 1986, 25., 2246.CrossRefGoogle Scholar
  38. (d).
    Gross, R. ; Kaim, W. Inory. Chem. 1986, 25, 498.CrossRefGoogle Scholar
  39. (e).
    Connelly, N.G.; Finn, C. J.; Freeman, M.J.; Orpen, A.G.; Stirling, J. J. Chem. Soc. Chem. Commun. 1984, 1025.Google Scholar
  40. (f).
    Legzdins, P.; Wassink, B. Orsganometallics, 1984, 3, 1811.CrossRefGoogle Scholar
  41. (g).
    Connelly, N.G.; Payne, J.D.; Geiger, W. E. J. Chem. Soc. Dal ton Trans 1983, 295.Google Scholar
  42. (h).
    Connelly, N.G.; Raven, S.J.; Geiger, W. E. J. Chem. Soc. Dal ton Trans. 1987, 467.Google Scholar
  43. (i).
    Zhuang, B.; McDonald, J.W.; Schultz, F. A.; Newton, W. E. Organemetallics 1984, 3, 943.CrossRefGoogle Scholar
  44. (j).
    Rosenhein, L. D.; Newton, W. E.; McDonald, J.W. Inorg. Chem. 1987, 26, 1695.CrossRefGoogle Scholar
  45. (k).
    Gueguen, M.; Guerchais, J. E.; Petillon, F.Y.; Talarmin, J. Chem. Soc. Chem. Commun. 1987, 557; and references therein.Google Scholar
  46. (l).
    McDonald, J.W. Inorg. Chem. 1985, 24, 1734.CrossRefGoogle Scholar
  47. (m).
    Broadly, K.; Connelly, N.G.; Lane, G.A.; Geiger, w. E. J, Chem. Soc. Dal ton Trans. 1986, 373.Google Scholar
  48. (n).
    Connelly, N.G.; Garcia, G.; Gilbert, M.; Stirling, J. S. J. Chem. Soc. Dal ton Trans. 1987, 1403.Google Scholar
  49. 19.
    Lau, W.; Huffman, J.C.; Kochi, J. K. Organometallics, 1982, 1 155CrossRefGoogle Scholar
  50. 20.
    Fukuzumi, S.; Ishikawa, K.; Tanaka, T. J. Chem. Soc. Dal ton Trans. 1985, 899.Google Scholar
  51. 21.
    Tamblyn, W.H.; Klinger, R.J.; Hwang, W.S.; Kochi, J.K. J. Am. Chem. Soc. 1981, 103, 3161.CrossRefGoogle Scholar
  52. 22.
    Purcell, K.F.; Kotz, J.C. Inorganic Chemistry, Saunders College Publishing, Philadelphia, 1977, p. 660.Google Scholar
  53. 23.
    Fanchiang, Y-T. Organometallics, 1985, 4, 1515.CrossRefGoogle Scholar
  54. 24.
    Topich, J.A.; Halpern, J. Inorg. Chem. 1979, 18, 1339 and references therein.CrossRefGoogle Scholar
  55. 25.
    Rubinson, K. A.; Itabashi, E.; Mark, H.B., Jr. Inorg. Chem. 1982, 21, 3571.CrossRefGoogle Scholar
  56. 26.
    Fukuzumi, S.; Kochi, J.K. J. Am. Chem. Soc. 1980, 102, 2141.CrossRefGoogle Scholar
  57. 27.
    Kochi, J.K. Pure. Chem. 1980, 52, 571.CrossRefGoogle Scholar
  58. 28.
    Lancon, D.; Cocolios, P.; Guilard, R.; Kadish, K. J. Am. Chem. Soc., 1984, 106, 4472; Organometalllics 1984, 3 1164.CrossRefGoogle Scholar
  59. 29.
    Rogers, W.N.; Page, J. A.; Baird, M.C. Inorg. Chem. 1981, 20, 3521.CrossRefGoogle Scholar
  60. 30.
    Since ruthenium compounds often accommodate higher oxidation states, Fp-R and its ruthenium analog were compared. (Joseph, M. F.; Page, J. A.; Baird, M. C. Organometallics, 1984, 3, 1749.) However, aside from the fact that the Ru(II) complexes were more difficult to oxidize than their ironf-containing analogs, oxidative reactions of the Ru(II) complexes gave results very similar to the iron compounds.CrossRefGoogle Scholar
  61. 31.
    Magnuson, R.H.; Meirowitz, R.; Zulu, S. J.; Giering, W. P. Organometallics, 1983, 2, 460, and references therein.CrossRefGoogle Scholar
  62. 32.
    Therien, M. J.; Trogler, W.C. J. Am, Chem. Soc. 1987, 109, 5127.CrossRefGoogle Scholar
  63. 33.
    Hayes, J. C.; Cooper, N.J. J. Am. Chem. Soc, 1982, 104, 5570;CrossRefGoogle Scholar
  64. Hayes, J. C.; Cooper, N.J. Organometallic Compounds: Synthesis, Structure, and Theory, Texas A and M University Press, College Station, Texas, 1983, p.353.Google Scholar
  65. 34.
    For similar results on another Cp2WR2 complex, see Chong, K.S.; Green, M.L.H. Organometallics. 1982, 1, 1586.CrossRefGoogle Scholar
  66. 35.
    Bodner, G.S.; Gladysz, J. A.; Nielsen, M.F.; Parker, V.D. J. Am, Chem. Soc. 1987, 109, 1757, and references therein.CrossRefGoogle Scholar
  67. 36.
    Bodner, G. S.; Gladysz, J. A.; Nielsen, M.F.; Parker, V.D. Organometallics 1987, 6, 1628.CrossRefGoogle Scholar
  68. 37.
    See also Asaro, M.F.; Bodner, G.S.; Gladysz, J. A.; Cooper, S. R.; Cooper, N.J. ibid, 1985, 4, 1020.Google Scholar
  69. 37.
    Guerchais, V.; Lapinte, C. J. Chem. Soc, Chem. Commun. 1986, 663.Google Scholar
  70. 38.
    Traylor, T.G.; Koermer, G.S. J. Org. Chem. 1981, 46, 3651.CrossRefGoogle Scholar
  71. 39.
    Bly, R.S.; Silverman, G.S.; Bly, R.K. Organometallics 1985, 4, 374.CrossRefGoogle Scholar
  72. 40.
    Jordon, R.F.; LaPointe, R. E.; Bajgur, C.S.; Echols, S.F.; Willett, R. J. Am, Chem. Soc. 1987, 109, 4111.CrossRefGoogle Scholar
  73. 41.
    Kotz, J.C.; Vining, W.; Coco, W.; Rosen, R.; Dias, A. R.; Garcia, M.H. Organometallics. 1983, 2 68.CrossRefGoogle Scholar
  74. 42.
    Asaro, M.F.; Cooper, S.R.; Cooper, N.J. J. Am. Chem. Soc. 1986, 108, 5187.CrossRefGoogle Scholar
  75. 43.
    Costa, R.; Dias, A.R.; Kotz, J. C.; Quaye, E. unpublished research.Google Scholar
  76. 44.
    The production of Ph3P=0 has been observed by others in solutions containing oxidized organcmetallies, but the explanation has been that the oxide is formed from traces of oxygen (Bagchi, R.N.; Bond, A.M.; Heggie, C.L. ; Henderson, T.L. ; Mocellin, E.; Seikel, R. A. Inorg. Chem. 1983, 22, 3007). We believe the following reaction is more likely: 3 PPh3 + H2O → Ph3P=0 + 2 Ph3PH+ + 2-.Google Scholar
  77. See Schiavon, G.; Zecchin, S.; Cogoni, G; Bontempelli, G. Electroanal. Chem. Interfac. Electroehem. 1973, 48, 425.CrossRefGoogle Scholar
  78. 45.
    See ref. 8 and Aviles, T.; Royo, P. J. Organometal. Chem. 1981, 221, 333.CrossRefGoogle Scholar
  79. 46.
    19-electron complexes were observed by Doxsee, et al. (ref.5); Broadley, et al. (ref. 15a); and Therien and Trogler (ref. 32).Google Scholar
  80. 47.
    Cotton, F. A.; Kibala, P.A. J. Am. Chem. Soc. 1987, 109, 3308CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • John C. Kotz
    • 1
  1. 1.Department of ChemistryState University of New YorkOneontaUSA

Personalised recommendations