Advertisement

Promoter Organization of Eukaryotic Protein-Coding Genes

  • C. Kedinger
  • H. Boeuf
  • D. Zajchowski
  • P. Jalinot
  • C. Hauss
  • B. Devaux
  • G. Albrecht
  • P. Jansen-Durr
Part of the NATO ASI Series book series (NSSE, volume 156)

Abstract

The identification and analysis of the control elements of eukaryotic genes has largely benefited from the development of site directed mutagenesis technology. Classical genetics is not readily applicable to higher eukaryotes essentially because of their genome complexity. New methods for the isolation and cloning of genes and, above all, the chemical synthesis of DNA, allow precise in vitro mutagenesis by deleting, inserting or altering defined parts of a given gene. The biological activity of these mutants can then be tested in vitro, by using appropriate cell-free transcription systems (1, 2), or in vivo, by putting the manipulated gene back into a cellular environment and measuring its expression after transient (3) or stable (4) cell transformation.

Keywords

Hypersensitive Site Whole Cell Extract SmaI Site Promoter Organization Unbind Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weil, P.A. et al. (1979) J. Biol. Chem. 254, 6163–6173.PubMedGoogle Scholar
  2. 2.
    Manley, J.L. et al. (1980) Proc. Natl. Acad. Sci. USA 77, 3855–3859.PubMedCrossRefGoogle Scholar
  3. 3.
    Graham, F.L. and van der Eb, A.J. (1973) Virology 52, 456–457.PubMedCrossRefGoogle Scholar
  4. 4.
    Scangos, G. and Ruddle, F.H. (1981) Gene 14, 1–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Galas, D. and Schmitz, A. (1978) Nucleic Acids Res. 5, 3175–3170.CrossRefGoogle Scholar
  6. 6.
    Church, G.M. and Gilbert, W. (1984) Proc. Natl. Acad. Sci. USA 81, 1991–1995.PubMedCrossRefGoogle Scholar
  7. 7.
    Fried, M.G. and Crothers, D.M. (1981) Nucleic Acids Res. 9, 6505–6525.PubMedCrossRefGoogle Scholar
  8. 8.
    Boeuf, H. et al. (1986) Cancer Cells — DNA tumor viruses, Cold Spring Harbor Laboratory 4, 203–215.Google Scholar
  9. 9.
    Zajchowski, D.A. et al. (1985) EMBO J. 4, 1293–1300.PubMedGoogle Scholar
  10. 10.
    McKnight, S.L. and Kingsbury, R. (1982) Science 217, 316–324.PubMedCrossRefGoogle Scholar
  11. 11.
    Natarajan, V. et al. (1984) Proc. Natl. Acad. Sci. USA 84, 6290–6294.CrossRefGoogle Scholar
  12. 12.
    Dignam, J.L. et al. (1983) Nucleic Acids Res. 11, 1475–1489.PubMedCrossRefGoogle Scholar
  13. 13.
    Moncollin, V. et al. (1986) EMBO J. 5, 2577–2584.PubMedGoogle Scholar
  14. 14.
    Banerji, J. et al. (1981) Cell 27, 299–308.PubMedCrossRefGoogle Scholar
  15. 15.
    Mathis, D.J. et al. (1981) Proc. Natl. Acad. Sci. USA 78, 7383–7387.PubMedCrossRefGoogle Scholar
  16. 16.
    Wildeman, A.G. et al. (1986) Mol. Cell. Biol. 6, 2098–2105.PubMedGoogle Scholar
  17. 17.
    Miyamoto, N.G. et al. (1985) EMBO J. 4, 3563–3570.PubMedGoogle Scholar
  18. 18.
    Jalinot, P. et al. (1987) Mol. Cell. Biol. 7, 3806–3817.PubMedGoogle Scholar
  19. 19.
    Maxam, A.M. and Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA 74, 560–564.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu, C. (1984) Nature 309, 229–234.PubMedCrossRefGoogle Scholar
  21. 21.
    Devaux, B. et al. (1987) Mol. Cell. Biol.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • C. Kedinger
    • 1
  • H. Boeuf
    • 1
  • D. Zajchowski
    • 1
  • P. Jalinot
    • 1
  • C. Hauss
    • 1
  • B. Devaux
    • 1
  • G. Albrecht
    • 1
  • P. Jansen-Durr
    • 1
  1. 1.U.184 de l’INSERMLGME du CNRSStrasbourg CédexFrance

Personalised recommendations