Initial Masses

  • D. C. V. Mallik
Conference paper
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 131)


Planetary nebulae represent a transitory stage in the life of the majority of stars as they proceed towards the end of their nuclear evolution and descend to the domain of white dwarfs. The immediate precursors of the central stars are probably red giants which populate a part of the HR diagram far removed from the region inhabited by the central stars of well recognised nebulae. The problem of determining the initial masses is complicated by the widespread occurrence of massloss on the red giant branch. The total amount of mass lost by a star must depend upon a number of stellar parameters including the initial mass, but the exact nature of this dependence remains to be discovered and a unique relation between the final masses and initial main sequence masses is not yet available. Thus even though the mass distribution of the nuclei of planetary nebulae (NPN) has been derived in the last few years, it has not been possible to deduce from this an unambiguous initial mass distribution of the progenitors. Further, an observed sample always suffers from selection effects and, in the particular case of NPN mass distribution, this has led to irretrievable loss of information.


Main Sequence Central Star Planetary Nebula Main Sequence Star Common Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker, A. 1985, Astron.Astrophys. 151, L13.ADSGoogle Scholar
  2. Becker, S.A., and Iben, I., Jr. 1979, Ap. J. 232, 831.ADSCrossRefGoogle Scholar
  3. Becker, S.A., and Iben, I., Jr. 1980, Ap.J. 237, 111.ADSCrossRefGoogle Scholar
  4. Bond, H.E. 1985, Cataclysmic Varaibles and Low-Mass X-ray Binaries, ed. D.Q. Lamb and J. Patterson, D. Reidel, p.15.Google Scholar
  5. Cahn, J.H., and Wyatt, S.P. 1976, Ap. J. 210, 508.ADSCrossRefGoogle Scholar
  6. Castellani, V., Chieffi, A., Pulone, L., and Tornambe, A. 1985, Ap. J. Lett. 294, L31.ADSCrossRefGoogle Scholar
  7. Cudworth, K.M. 1974, Astron.J. 79, 1384.ADSCrossRefGoogle Scholar
  8. Daub, C.T. 1982, Ap.J. 260, 612.ADSCrossRefGoogle Scholar
  9. Greig, W.E. 1971, Astron. Astrophys. 10, 161.ADSGoogle Scholar
  10. Greig, W.E. 1972, Astron.Astrophys. 18, 70.ADSGoogle Scholar
  11. Heap, S.R., and Augensen, H.J. 1987, Ap.J., 313, 268.ADSCrossRefGoogle Scholar
  12. Iben, I., Jr. and Renzini, A. 1983, A. Rev. Astron. Astrophys. 21, 271.ADSCrossRefGoogle Scholar
  13. Iben, I., Jr. and Tutukov, A.V. 1984, Ap. J. Suppl. 54, 335.ADSCrossRefGoogle Scholar
  14. Iben, I., Jr. and Tutukov, A.V. 1985, Ap. J. Suppl. 58, 661.ADSCrossRefGoogle Scholar
  15. Ishida, K., and Weinberger, R. 1987, Astron. Astrophys. 178, 227.ADSGoogle Scholar
  16. Kaler, J.B. 1983a, Ap. J. 271, 188.ADSCrossRefGoogle Scholar
  17. Kaler, J.B. 1983b, Planetary Nebulae, IAU Symposium 103, ed. D.R. Flower, D. Reidel, p.245.Google Scholar
  18. Koester, D., Schulz, H., and Weidemann, V. 1979, Astron. Astrophys. 76, 262.ADSGoogle Scholar
  19. Lutz, J.H. 1984, Ap. J. 279, 714.ADSCrossRefGoogle Scholar
  20. Mallik, D.C.V. 1982, Bull. astr. Soc. India 10, 73.ADSGoogle Scholar
  21. Mallik, D.C.V. 1985, Astrophys. Lett. 24, 173.ADSGoogle Scholar
  22. Mendez, R.H. 1978, Mon. Not. Roy. astr. Soc. 185, 647.ADSGoogle Scholar
  23. Mendez, R.H. 1980, Close Binary Stars, IAU Symposium 88, ed. M.J. Plavec, D.M. Popper and R.K. Ulrich, D. Reidel, p.567.Google Scholar
  24. Mendez, R.H., and Niemela, V.S. 1977, Mon. Not. Roy. astr. Soc. 178, 409.ADSGoogle Scholar
  25. Mendez, R.H., and Niemela, V.S. 1981, Astron. J. 250, 240.ADSGoogle Scholar
  26. Miller, G.E., and Scalo, J.M. 1979, Ap. J. Suppl. 41, 513.ADSCrossRefGoogle Scholar
  27. Paczynski, B. 1985, Cataclysmic Variables and Low-Mass X-ray Binaries, ed. D.Q. Lamb and J. Patterson, D. Reidel, p.1.Google Scholar
  28. Peimbert, M. 1978, Planetary Nebulae, IAU Symposium 76, ed. Y. Terzian, D. Reidel, p.215.Google Scholar
  29. Peimbert, M. 1981, Physical Processes in Red Giants, ed. I. Iben, Jr. and A. Renzini, D. Reidel, p.409.Google Scholar
  30. Peimbert, M. 1985, Rev. Mex. Astron. Astrofis. 10, 125.ADSGoogle Scholar
  31. Peimbert, M., and Serrano, A. 1980, Rev. Mex. Astron. Astrofis. 5, 9.ADSGoogle Scholar
  32. Peimbert, M., and Torres-Peimbert, S. 1983, Planetary Nebulae, IAU Symposium 103, ed. D.R. Flower, D. Reidel, p.233.Google Scholar
  33. Pottasch, S.R. 1983, Planetary Nebulae, IAU Symposium 103, ed. D.R. Flower, D. Reidel, p.391.Google Scholar
  34. Pottasch, S.R. 1984, Planetary Nebulae, D. Reidel, p.235.Google Scholar
  35. Reay, N.K. 1983, Planetary Nebulae, IAU Symposium 103, ed. D.R. Flower, D. Reidel, p.31.Google Scholar
  36. Renzini, A., and Voli, M. 1981, Astron. Astrophys. 94, 175.ADSGoogle Scholar
  37. Ritter, H. 1986, Astron. Astrophys. 169, 139.ADSGoogle Scholar
  38. Schmidt, M. 1963, Ap.J. 137, 758.ADSzbMATHCrossRefGoogle Scholar
  39. Schonberner, D. 1981, Astron.Astrophys. 103, 119.ADSGoogle Scholar
  40. Torres-Peimbert, S. 1984, Stellar Nucleosynthesis, ed. C. Chiosi and A. Renzini, D. Reidel, p.3.Google Scholar
  41. Tutukov, A.V., and Yungelson, L. 1979, Mass Loss and Evolution of 0-type Stars, ed. P.S. Conti and C.W.H. de Loore, D. Reidel, p.401.Google Scholar
  42. Weidemann, V. 1984, Astron.Astrophys. 134, L1.ADSGoogle Scholar
  43. Weidemann, V., and Koester, D. 1983, Astron.Astrophys. 121, 77.ADSGoogle Scholar
  44. Whitelock, P.A., and Menzies, J.W. 1986, Mon. Not. Roy. astr. Soc. 223, 497.ADSGoogle Scholar
  45. Wielen, R., and Fuchs, B. 1983, Kinematics, Dynamics and Structure of the Milky Way, ed. W.L.H. Shuter, D. Reidel, p.81.Google Scholar

Copyright information

© International Astronomical Union 1989

Authors and Affiliations

  • D. C. V. Mallik
    • 1
  1. 1.Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations