Binding to cellulose derivatives

  • D. M. Johns


One of the approaches to solving the problem of chromatographic resolution of chiral molecules is the utilization of naturally occurring, optically active polymers. Like the interaction between an enzyme and its substrate, the polymer can lock on to the different stereochemistries of each enantiomer and provide chiral recognition. Proteins, oligosaccharides and celluloses have had the greatest degree of success, although usually bonded on to silica gel, rather than in their free state. In this chapter, celluloses, their derivatives and analogues will be discussed: oligosaccharides (i.e. cyclodextrins) and proteins (e.g, bovine serum albumin and α1 acid-glycoprotein) have been covered in earlier chapters.


Cellulose Derivative Chiral Stationary Phase Chiral Recognition Chromatographic Resolution Cellulose Triacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Francotte, E., Romain, M., Lohmann, D. and Mueller, R. (1985) Chromatographic resolution of racemates on chiral stationary phases. Part 1. Influences of the supramolecular structure of cellulose triacetate. J. Chromatogr.347, 25.CrossRefGoogle Scholar
  2. Gübitz, G., Jellenz, W. and Schönleber, J. (1980) High-performance liquid chromatographic resolution of optical isomers of dl-tryptophan, 5-hydroxy- d,l-tryptophan and dl-dopa on cellulose columns. J. High Res. Chromatogr. Commun.3, 31.CrossRefGoogle Scholar
  3. Hesse, G. and Hagel, R. (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6, 277.CrossRefGoogle Scholar
  4. Ichida, A., Shibata, T., Okamoto, I., Yuki, Y., Namikoshi, H. and Toga, Y. (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19, 280.CrossRefGoogle Scholar
  5. Klimisch, H.-J. and Ambrosius, D. (1976) Separation of polycyclic aromatic hydrocarbons by high-pressure liquid chromatography. Comparison of a determination of benzo(a)pyrene with separation on columns of cross-linked cellulose acetate and a reversed-phase system. J. Chromatogr.120, 299.CrossRefGoogle Scholar
  6. Lindner, K.R. and Mannschreck, A. (1980) Separation of enantiomers by high-performance liquid chromatography on triacetyl cellulose. J. Chromatogr.193, 308.CrossRefGoogle Scholar
  7. Maccudieri, P., Caude, M., Rosset, R.and Tambute, A. (1987) Int. Sym. on Chiral Separations, Guildford, UK (in press).Google Scholar
  8. Mintas, M., Mannschreck, A. and Scheider, M.P. (1979) (1S, 2S)-(+)- and (1R, 2R)-(-)-1,2-diphenylcyclopropane from their racemic mixture by liquid chromatography on triacetylcellulose. J. Chem. Soc. Chem. Commun., 602.Google Scholar
  9. Okamoto, Y., Kawashima, M., Aburatani, R., Hadata, K., Nishiyama, T. and Mafuda, M. (1986a) Optical resolution of β-blockers by HPLC on cellulose triphenylcarbamate derivatives. Chem. Lett., 1237.Google Scholar
  10. Okamoto, Y., Kawashima, M. Yamamoto, K. and Hadata, K. (1984a) Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem. Lett., 739.Google Scholar
  11. Okamoto, Y., Kawashima, M. and Hadata, K. (1984b) Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel. J. Amer. Chem. Soc.106, 5357.CrossRefGoogle Scholar
  12. Okamoto, Y., Okamoto, T., Yuki, H., Murata, S., Noyori, R. and Takaya, H. (1981) Novel packing material for optical resolution: (+)-Poly(triphenyl methyl methacrylate) coated on macroporous silica gel. J. Amer. Chem. Soc.103, 6971.CrossRefGoogle Scholar
  13. Okamoto, Y., H. Sakamoto, K. Hatada and Irie M. (1986b) Resolution of enantiomers by HPLC on cellulose trans- and cis- tris (4-phenylazophenylcarbamate) J. Chromatogr. 983.Google Scholar
  14. Okamoto, Y., M. Kawashima and Hatada K. (1986c) Chromatographic resolution XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr.363, 173.CrossRefGoogle Scholar
  15. Okamoto, Y., R. Aburatni and K. Hatada (1987) Chromatographic chiral resolution XIV. Cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr.389, 95.CrossRefGoogle Scholar
  16. Shibata, T., Okamoto, I. and Ishii, K. (1986) Chromatographic optical resolution on polysaccharides and their derivatives. J. Liq. Chromatogr.9, 313.CrossRefGoogle Scholar
  17. Wainer, I.W., Alembik, M.C. and Smith, E. (1987a) Resolution of enantiomeric amides on a cellulose tribenzoate chiral stationary phase: mobile phase modifier effects on retention and stereoselectivity. J. Chromatogr.388, 65.CrossRefGoogle Scholar
  18. Wainer, I.W., R.M. Stiffin and T. Shibata (1987b) Resolution of enantiomeric aromatic alcohols on a cellulose tribenzoate high-performance liquid chromatography chiral stationary phase. A proposed chiral recognition mechanism. J. Chromatogr.411, 139.CrossRefGoogle Scholar
  19. Wainer, I.W. and Alembik, M.C. (1986) Resolution of enantiomeric amides on cellulose-based chiral stationary phases: Steric and electronic effects. J. Chromatogr.358, 85.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1989

Authors and Affiliations

  • D. M. Johns

There are no affiliations available

Personalised recommendations