Chiral Liquid Chromatography pp 129-147 | Cite as
Immobilized proteins as HPLC chiral stationary phases
Chapter
Abstract
Proteins are high-molecular-weight polymers composed of chiral subunits (L-amino acids). These polymers play a number of different roles in a biological system including the complexation (or binding) of xenobiotic materials. As proteins are chiral polymers, it is not surprising that the binding of small enantiomeric molecules is often stereospecific. This is especially true for the serum proteins α1-acid glycoprotein (AGP) and albumin (SA).
Keywords
Human Serum Albumin Chiral Stationary Phasis Anionic Modifier Tetrabutylammonium Bromide Precolumn Derivatization
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Alebic-Kolbah, T., F. Kajfez, S. Rendic, V. Sunic, A, Konowal and G. Snatzke (1979) Circular dichroism and gel filtration study of binding of prochiral and chiral 1,4-benzodiazepin-2-ones to human serum albumin. Biochem. Pharmacol.28, 2457–2464.CrossRefGoogle Scholar
- Allenmark, S., and B. Bomgren (1982) Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases II. Optical resolution of a sulphoxide, a sulphoximine and a benzoyl-amino acid. J. Chromatogr.252, 297–300.CrossRefGoogle Scholar
- Allenmark, S., B. Bomgren and H. Boren (1983) Direct LC separation of enantiomers on immobilised protein stationary phases. III. Optical resolution of a series of N-aroyl- d,l -aminoacids by HPLC on bovine serum albumin covalently bound to silica. J. Chromatogr.365, 63–68.CrossRefGoogle Scholar
- Allenmark, S., B. Bomgren and H. Boren, (1984) Direct liquid chromatographic separation of enantiomers on immobilised protein stationary phase IV. Molecular interaction forces and retention behavior in chromatography on bovine serum albumin as a stationary phase. J. Chromatogr.316, 617–624.CrossRefGoogle Scholar
- Allenmark, S. (1986) Optical resolution by liquid chromatography on immobilised bovine serum albumin. J. Liq. Chromatogr.9, 425–442.CrossRefGoogle Scholar
- Aubel, M. and L. B. Rogers (1987) Effects of pretreatment on enantioselectivity of silica-bound bovine serum albumin used as high-performance liquid chromatographic stationary phase. J. Chromatogr.392, 415–420.CrossRefGoogle Scholar
- Brown, N. A., E. Jahnchen, W. E. Muller and U. Wollert (1977) Optical studies on the mechanism of the interaction of the enantiomers of the anticoagulant drugs phenprocoumon and warfarin with human serum albumin. Mol. Pharmacol.13, 70–78.Google Scholar
- Chu, Y.-Q. and I.W. Wainer (1988) The measurement of warfarin enantiomers in serum using coupled achiral/chiral HPLC. (unpublished).Google Scholar
- Delée, E., L. LeGarrec, I. Jullien, S. Beranger, J.C. Pascal and H. Pinhas (1978) Direct HPLC resolution of β-aminoalcohol (tazifylline, ranolazine, sotalol) enantiomers. Abstracts 11th Int. Symposium on Column Liquid Chromatography, Amsterdam, Abs. No. FR-P-12.Google Scholar
- Erlandsson, P., L. Hansson and R. Isakkson (1986) Direct analytical and preparative resolution of enantiomers using albumin adsorbed to silica as a stationary phase. J. Chromatogr.370, 475–483.CrossRefGoogle Scholar
- Foster, J.F. (1975) Plasma albumins. In The Plasma Proteins, ed. K. Schmid. Academic Press, New York.Google Scholar
- Gratton, G., E. Decorte, F. Moimas, C. Angeli and V. Sunjic (1985) Enantioselecitivity of the binding of S- and R-7-chloro-1,3-dihydro-3-methyl-5-phenyl-2H-1,4-benzodiazepines to human serum albumin. Il Farmaco Ed. Sci.40, 209–214.Google Scholar
- Hermansson, J. (1983) Direct liquid chromatographic resolution of racemic drugs using α1acid glycoprotein as the stationary phase. J. Chromatogr.269, 71–80.CrossRefGoogle Scholar
- Hermansson, J. (1984) Liquid chromatographic resolution of racemic drugs using a chiral α1acid glycoprotein column. J. Chromatogr.298, 67–78.CrossRefGoogle Scholar
- Hermansson, J. (1985) Resolution of racemic aminoalcohols (β-blockers), amines and acids as enantiomeric derivatives using a chiral α1-acid glycoprotein column. J. Chromatogr.325, 379–384.CrossRefGoogle Scholar
- Hermansson, J. and M. Eriksson (1986) Direct liquid chromatographic resolutions of acidic drugs using a chiral α1-acid glycoprotein column (Enantiopac). J. Liq. Chromatogr.9, 621–639.CrossRefGoogle Scholar
- Hsu, T.-B., P.A. Shah and L.B. Rogers (1987) Synthesis and characterisation of chiral stationary phases from amino acids and small peptides for liquid chromatography fractionations of racemic alcohols. J. Chromatogr.391, 145–160.CrossRefGoogle Scholar
- Konowal, A., G. Snatzke, T. Alebic-Lolbach, F. Kajfez, S. Rendic and V. Sunjic (1978) General approach to chiroptical characterisation of binding of prochiral and chiral 1,4-benzodiazepin-2-ones to human serum albumin. Biochem. Pharmacol., 28, 3109–3113.CrossRefGoogle Scholar
- Lee, E.D.J., S.B. Ang and T.L. Lee (1987) Stereoselective high-performance liquid chromatographic assay for bupivacaine enantiomers. J. Chromatogr.420, 203–206.CrossRefGoogle Scholar
- Lima, J.J., G.L. Jungbluth, T. Devine and L.W. Robertson (1984) Stereoselective binding of diisopyramide to human plasma protein. Life Sci.35, 835–837.CrossRefGoogle Scholar
- G. Lindgren (1985) (LKB Produkter AB, Bromma, Sweden), personal communication.Google Scholar
- Miwa, T., M. Ichikawa, M. Tsuno, T. Hattori, T. Miyakawa, M. Kayano and Y. Miyake (1987a) Direct liquid chromatographic resolution of racemic compounds. Use of ovomucoid as a column ligand. Chem. Pharm. Bull.35, 682–686.Google Scholar
- Miwa, T., T. Miyakawa, M. Kayano and Y. Miyake (1987b) Application of an ovomucoid-conjugated column for the optical resolution of some pharmaceutically important compounds, J. Chromatogr.408, 316–322.CrossRefGoogle Scholar
- Muller, W.E. and U. Wollert (1975) High stereospecificity of the benzodiazepine binding site on human serum albumin. Mol. Pharmacol.11, 52–60.Google Scholar
- Muller, W.E. and U. Wollert (1979) Human serum albumin as a ‘silent receptor’ for drugs and endogenous substances. Pharmacology 19, 59–68.CrossRefGoogle Scholar
- Muller, W.E. and A.E. Stillbauer (1983) Characterisation of a common binding site for basic drugs on human α1-acid glycöprotein (orosomucoid). Nauyn-Schmiedeberg’s Arch. Pharmacol.322, 170–178.CrossRefGoogle Scholar
- Muller, W.E., A.E. Stillbauer and S. El-Gamal (1983) Psychotropic drug competition for [3H] imipramine binding further indicates the presence of only one high-affinity drug binding site on human α1-acid glycoprotein (orosomucoid). J. Pharm. Pharmacol.35, 684–693.CrossRefGoogle Scholar
- Neurath, H. and Schwart, G. W. (1950) The mode of action of the crystalline pancreatic proteolytic enzymes. Chem. Rev.46, 69–153.CrossRefGoogle Scholar
- Otagiri, M., J.S. Fleitman and J.H. Perrin (1980) Investigations into the binding of phenprocoumon to albumin using fluorescence spectroscopy. J. Pharm. Pharmacol.32, 478–484.CrossRefGoogle Scholar
- Schill, G., I.W. Wainer and S.A. Barkan (1986a) Chiral separation of cationic drugs on an α1-acid glycoprotein bonded stationary phase. J. Liq. Chromatogr.9, 641–699.CrossRefGoogle Scholar
- Schill, G., I.W. Wainer and S.A. Barkan (1986b) Chiral separations of cationic and anionic drugs on an á 1 acid glycoprotein-bonded stationary phase (Enantiopac). J. Chromatogr.365, 73–88.CrossRefGoogle Scholar
- Seller, E.M. and J. Koch-Weser (1975) Interaction of warfarin stereoisomers with human albumin. Pharmacol. Res. Comm.7, 331–341.CrossRefGoogle Scholar
- Sjoholm, I. (1988) Specificity of binding sites on plasma proteins. In Drug Protein Binding. Ed. M.M. Reidenberg and S. Erill, Prager Publishers, Philadelphia.Google Scholar
- Stewart, K.K. and R.F. Doherty (1973) Resolution of D, L-tryptophan by affinity chromatography on bovine serum albumin-agarose columns. Proc. Natl. Acad. Sci. USA 70, 2850–2852.CrossRefGoogle Scholar
- Tan, Y.K. and S.J. Soldin (1987) Analysis of salbutanol enantiomers in human urine by chiral high-performance liquid chromatography and preliminary studies related to the stereoselective disposition kinetics in man. J. Chromatogr.422, 187–195.CrossRefGoogle Scholar
- Tillement, J.P., G. Houin, R. Zini, S. Urien, E. Albengres, J. Barre, M. Lacomte, P. D’Athis and B. Sebille (1984) The binding of drugs to blood plasma macromolecules: Recent advances and therapeutic significance. Adv. Drug Res.13, 59–86.Google Scholar
- Vogelgesang, B. and H. Echizen (1985) Stereoselective protein binding of verapamil isomers Nauyn-Schmiedeberg’s Arch. Pharamcol., R 98.Google Scholar
- Wainer, I.W. and R.M. Stiffin (1988) Direct resolution of the stereoisomers of leucovorin and 5-methyltetrahydrofolate using a bovine serum albumin high-performance liquid chromatographic chiral stationary phase coupled to an achiral phenyl column J. Chromatogr.424, 158–162.CrossRefGoogle Scholar
- Wainer, I.W. and Y.-Q. Chu (1988) The use of mobile phase modifiers to alter retention and stereoselectivity on a bovine serum albumin HPLC chiral stationary phase, (unpublished).Google Scholar
- Wainer, I.W., P. Jadaud, G.R. Schonbaum, S.V. Kakodkar and M.P. Henry. Enzymes as HPLC supports for chiral resolutions: Initial investigations with α-chymotrypsin. Chromatographia, (unpublished).Google Scholar
- Walle, U.K., T. Walle, S.A. Bai and L.S. Olanoff (1983) Stereoselective binding of propranolol to human plasma, α 1-acid glycoprotein and albumin. Clin. Pharmacol. Therap.34, 718–723.CrossRefGoogle Scholar
Copyright information
© Chapman & Hall 1989