Skip to main content

Studies on Lead and Blood—Brain Barrier Function in the Developing Rat

  • Chapter
Lead Exposure and Child Development

Summary

Blood-brain barrier function was assessed in two lead exposure models using 19–21-day-old rats. In animals receiving lead via the milk, blood lead ranged between 20 and 90 µg/dl without affecting growth. Cerebrovascular permeability (PS-product) was increased to basic and neutral amino acids and thiamine in certain regions of the cerebral hemisphere. Regional permeability to mannitol was unchanged. These alterations may have been due to tissue repair processes or to delayed maturation. In animals infused with lead to maintain steady plasma levels up to 764 µg/dl, blood—brain barrier integrity was unaffected but regional glucose uptake was inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot, R. E., Schachter, D., Batt, E. R. and Flamm, M. (1986) Sulfhydryl substituents of the human erythrocyte hexose transport mechanism. Am. J. Physiol., 250, C853–860

    Google Scholar 

  • Alvey, N., Galway, N. and Lane, P. (1982) An Introduction to GENSTAT ( London: Academic Press )

    Google Scholar 

  • Aungst, B. J., Dolce, J. A. and Fung, H. L. (1981). The effect of dose on the disposition of lead in rats after intravenous and oral administration. Toxicol. Appl. Pharmacol., 61, 48–57

    Article  PubMed  CAS  Google Scholar 

  • Balazs, R., Lewis, P. D. and Patel, A. J (1979) Nutritional deficiencies and brain development. In Falkner, F. and Tanner, J. M. (eds), Human Growth, vol. 3 ( London: Bailliere Tindall )

    Google Scholar 

  • Baños, G., Daniel, P. M. and Pratt, O. E. (1978). The effect of age upon the entry of some amino acids into the brain, and their incorporation into cerebral proteins. Dev. Med. Child Neurol, 20, 335–346

    Article  PubMed  Google Scholar 

  • Bradbury, M. W. B. (1985) The blood-brain barrier. Transport across the cerebral endothelium. Circ. Res., 57, 213–222

    PubMed  CAS  Google Scholar 

  • Bradbury, M. W. B. and Deane, R. (1986) Rate of uptake of lead-203 into brain and other soft tissues of the rat at constant radiotracer levels in plasma. Ann. N.Y. Acad. Sci., 481, 142–160

    Article  PubMed  CAS  Google Scholar 

  • Braun, L. D., Cornford, E. M. and Oldendorf, W. H. (1980) Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J. Neurochem., 34, 147–152

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, N. G., Winder, C. and Lewis, P. D. (1981) Dose response relationships during perinatal lead administration in the rat: a model for the study of lead effects on brain development. Toxicology, 21, 117–128

    Article  PubMed  CAS  Google Scholar 

  • Cornford, E. M., Braun, L. D. and Oldendorf, W. H. (1982) Developmental modulations of blood-brain barrier permeability as an indicator of changing nutritional requirements in the brain. Ped. Res., 16, 324–328

    Article  CAS  Google Scholar 

  • Cremer, J. E. and Cunningham, V. J. (1981) Properties of transport processes of the blood- brain barrier during development. In Kovách, A. G. B., Hamar, J. and Szabó, L. (eds), Advances in Physiological Science, vol. 7: Cardiovascular Physiology, Microcirculation and Capillary Exchange (London: Pergamon Press )

    Google Scholar 

  • Cremer, J. E., Cunningham, V. J., Pardridge, W. M., Braun, L. D. and Oldendorf, W. H. (1979) Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem., 33, 439–445

    Article  PubMed  CAS  Google Scholar 

  • Crone, C. (1963) The permeability of capillaries in various organs as determined by use of the ’Indicator Diffusion Method. Acta Physiol. Scand., 58, 292–305

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, V. J., Hargreaves, R. J., Pelling, D. and Moorhouse, S. R. (1986) Regional blood- brain glucose transfer in the rat: a novel double-membrane kinetic analysis. J. Cerebral Blood Flow Metab., 6, 305–314

    Article  CAS  Google Scholar 

  • Daniel, P. M., Lam, D. K. C. and Pratt, O. E. (1985) Comparison of the vascular permeability of the brain and spinal cord to mannitol and inulin in rats. J. Neurochem., 45, 647–649

    Article  PubMed  CAS  Google Scholar 

  • Daniel, P. M., Love, E. R., Moorhouse, S. R., Pratt, O. E. and Wilson, P. A. (1974) A method for rapidly washing the blood out of an organ or tissue of the anaesthetized living animal. J. Physiol, 237, pll–p12

    Google Scholar 

  • Daniel, P. M., Love, E. R. and Pratt, O. E. (1978) The effect of age upon the influx of glucose into the brain. J. Physiol., 274, 141–148

    PubMed  CAS  Google Scholar 

  • Fernandez, F. J. and Hilligoss, D. (1982) An improved graphite furnace method for the determination of lead in blood using matrix modification and the L’vov platform. Atomic Spectrosc., 3, 130–131

    CAS  Google Scholar 

  • Goldstein, G. W., Asbury, A. K. and Diamond, I. (1974) Pathogenesis of lead encephalopathy. Uptake of lead and reaction of brain capillaries. Arch. Neurol., 31, 382–389

    PubMed  CAS  Google Scholar 

  • Hargreaves, R. J., Moorhouse, S. R., Gangolli, S. D. and Pelling, D. (1986) The effects of methylmercury on glucose transport, glucose metabolism and blood flow in the central nervous system of the rat. In Suckling, A. J., Rumsby, M. G. and Bradbury, M. W. B. (eds), The Blood-Brain Barrier in Health and Disease ( Chichester: Ellis Horwood )

    Google Scholar 

  • Hervonen, H. and Steinwall, O. (1984) Endothelial surface sulfhydryl-groups in blood-brain barrier transport of nutrients. Acta Physiol. Scand., 121, 343–351

    Article  PubMed  CAS  Google Scholar 

  • Kolber, A. R., Krigman, M. R. and Morell, P. (1980) The effect of in vitro and in vivo lead intoxication on monosaccharide transport in isolated rat brain microvessels. Brain Res., 192, 513–521

    Article  PubMed  CAS  Google Scholar 

  • Lefauconnier, J. M., Lavielle, E., Terrien, N., Bernard, G. and Fournier, E. (1980) Effect of various lead doses on some cerebral capillary functions in the suckling rat. Toxicol. Appl. Pharmacol, 55, 467–476

    Article  PubMed  CAS  Google Scholar 

  • Lefauconnier, J. M. and Trouvé, R. (1983) Developmental changes in the pattern of amino acid transport at the blood-brain barrier in rats. Dev. Brain Res., 6, 175–182

    Article  CAS  Google Scholar 

  • Lorenzo, A. V. and Gewirtz, M. (1977) Inhibition of [14C]tryptophan transport into brain of lead exposed neonatal rabbits. Brain Res., 132, 386–392

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, K., Vinters, H. V., Berliner, J. A., Bready, J. V. and Cancilla, P. A. (1986) Effect of inorganic lead on some functions of the cerebral microvessel endothelium. Toxicol Appl Pharmacol, 84, 389–399

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, I. A. (1980) An appraisal of rodent studies on the behavioural toxicity of lead: the role of nutritional status. In Singhal, R. L. and Thomas, J. A. (eds), Lead Toxicity ( Baltimore: Urban & Schwarzenborg )

    Google Scholar 

  • Michaelson, I. A. and Bradbury, M. (1982) Effect of early inorganic lead exposure on rat blood-brain barrier permeability to tyrosine or choline. Biochem. Pharmacol, 31, 1881– 1885

    Article  PubMed  Google Scholar 

  • Orlowski, M. (1976) Possible role of glutathione in transport processes. In Levi, G., Battistin, L. and Lajtha, A. (eds), Transport Phenomena in the Nervous System; Physiological and Pathological Aspects ( New York and London: Plenum Press )

    Google Scholar 

  • Pardridge, W. M. (1976) Inorganic mercury: selective effects on blood-brain barrier transport systems, J. Neurochem., 27, 333–335

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev., 63, 1481–1535

    PubMed  CAS  Google Scholar 

  • Passow, H., Rothstein, A. and Clarkson, T. W. (1961) General pharmacology of the heavy metals. Pharmacol Rev., 13, 183–224

    Google Scholar 

  • Pellegrino, L. J., Pellegrino, A. S. and Cushman, A. J. (1979) A Stereotaxic Atlas of the Rat Brain ( New York: Plenum Press )

    Google Scholar 

  • Pentschew, A. and Garro, F. (1966) Lead encephalo-myelopathy of the suckling rat and its implications on the porphyrinopathic nervous diseases. Acta Neuropathol. (Berlin), 6, 266–278

    Article  PubMed  CAS  Google Scholar 

  • Pratt, O. E. (1979) Adequate nutrition of the developing brain. In Korobkin, R. and Guilleminault, C. (eds), Advances in Perinatal Neurology, vol. I ( New York: Spectrum )

    Google Scholar 

  • Pratt, O. E. (1985) Continuous-injection methods for the measurement of flux across the blood-brain barrier. The steady-state, initial-rate method. In Marks, N. and Rodnight, R. (eds), Research Methods in Neurochemistry, vol. 6 ( New York-London: Plenum Press )

    Google Scholar 

  • Saunders, N. R. (1977) Ontogeny of the blood-brain barrier. Exp. Eye Res., (Suppl.), 523–550

    Google Scholar 

  • Silbergeld, E. K., Wolinsky, J. S. and Goldstein, G. W. (1980) Electron probe microanalysis of isolated brain capillaries poisoned with lead. Brain Res., 189, 369–376

    Article  PubMed  CAS  Google Scholar 

  • Simons, T. J. B. (1986) Passive transport and binding of lead by human red blood cells. J. Physiol, 378, 267–286

    PubMed  CAS  Google Scholar 

  • Steinwall, O. (1968) Transport inhibition phenomena in unilateral chemical injury of blood-brain barrier. Prog. Brain Res., 29, 357–364

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom, R., Muntzing, K., Kalimo, H. and Sourander, P. (1985) Changes in the integrity of the blood-brain barrier in suckling rats with low dose lead encephalopathy. Acta Neuropathol, 68, 1–9

    Article  PubMed  CAS  Google Scholar 

  • Takasato, Y., Rapoport, S. I. and Smith, Q. R. (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484–H493

    PubMed  CAS  Google Scholar 

  • Thomas, J. A., Dallenbach, F. D. and Thomas, M. (1973) The distribution of radioactive lead (210Pb) in the cerebellum of developing rats. J. Pathol, 109, 45–50

    Article  PubMed  CAS  Google Scholar 

  • Winder, C., Garten, L. L. and Lewis, P. D. (1983) The morphological effects of lead on the developing central nervous system. Neuropathol. Appl. Neurobiol, 9, 87–108

    Article  PubMed  CAS  Google Scholar 

  • Winneke, G. (1986) Animal studies. In Lansdown, R. and Yule, W. (eds), The Lead Debate: the environment, toxicology and child health ( London-Sydney: Croom Helm )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 ECSC-EEC-EAEC, Brussels — Luxembourg; EPA, USA

About this chapter

Cite this chapter

Pelling, D., Hargreaves, R.J., Moorhouse, S.R. (1989). Studies on Lead and Blood—Brain Barrier Function in the Developing Rat. In: Smith, M.A., Grant, L.D., Sors, A.I. (eds) Lead Exposure and Child Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0847-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0847-5_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6868-0

  • Online ISBN: 978-94-009-0847-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics