The enormous progress in gene sequencing achieved during recent years has made possible the deduction of protein sequences from cDNA. These studies have developed so fast that the actual isolation of gastroentero pancreatic hormones from vertebrate animals was left far behind the appearance of the deduced primary structures of their hormonal precursors. Interestingly, fish have served as model animals for this research almost as often as mammals (Hobard et al, 1980a, b; Sorokin et al., 1982; Lund et al., 1983a,b; Heinrich et al, 1984), probably because the endocrine pancreas in many fish species is represented by the so-called Brockmann body, consisting predominantly of endocrine (islet) cells (Falkmer, 1985a; Epple, 1987). This unique structure has facilitated the isolation of mRNA. The progress made possible by employing cDNA probes to predict sequences of the hormonal precursors, though fascinating, does not give the physiologist a definitive idea of which biologically active peptide will appear in a particular animal species after post-translational processing in the islet cells (Andrews and Dixon, 1987). For example, we already know that pancreatic peptides in different fish are subjected to such post-translational modifications as glycosylation, proteolytic processing, hydroxylation and disulphide bond formation (Noe and Spiess, 1983; Andrews and Ronner, 1984; Steiner et al., 1984; Noe and Andrews, 1986; Andrews and Dixon, 1987; Chapter 14).


Insulin Receptor Pancreatic Islet Pancreatic Polypeptide Coho Salmon Endocrine Pancreas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablett, R.F., Taylor, M.J. and Selivonchick, D.P. (1983) The effects of high protein and high carbohydrate diets on 125I insulin binding in skeletal muscle plasma membranes and isolated hepatocytes of rainbow trout (Salmo gairdneri). Br. J. Nutr., 50, 129–34.Google Scholar
  2. Adrian, T.E., Ferri, G.-L., Bacarese-Hamilton, A.J., Fuessl, H.S., Polak, J.M. and Bloom, S.R. (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology, 89, 1070–7.Google Scholar
  3. Ali-Rachedi, A., Varndell, I.M., Adrian, T.E., Gapp, D.A., Van Noorden, S., Bloom, S.R. and Polak, J.M. (1984) Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactans in endocrine cells of the gut and pancreas. Histochemistry, 80, 487–91.Google Scholar
  4. Andrews, P.C. and Dixon, J.E. (1986) Isolation and structure of the second of two major peptide products from the precursor to an anglerfish peptide homologous to neuropeptide Y. J. Biol. Chem., 261, 8674–7.Google Scholar
  5. Andrews, P.C. and Dixon, J.E. (1987) Isolation of products and intermediates of pancreatic prosomatostatin processing: the use of fast atom bombardment mass spectrometry as an aid in analysis of prohormone processing. Biochemistry, 26, 4853–61.Google Scholar
  6. Andrews, P.C., Hawke, D.H., Lee, T.D. Legesse, K., Noe, B.D. and Shively, J.E. (1986) Isolation and structure of the principal products of preproglucagon processing, including an amidated glucagon-like peptide. J. Biol. Chem., 261, 8128–33.Google Scholar
  7. Andrews, P.C., Hawke, D., Shively, J.E. and Dixon, J.E. (1984a) Anglerfish prosomatostatin II is processed to somatostatin-28 and contains hydroxylysine at residue 23. J. Biol. Chem., 259, 15021–4.Google Scholar
  8. Andrews, P.C., Hawke, D., Shively, J.E. and Dixon, J.E. (1985) A nonamidated peptide homologous to porcine peptide YY and neuropeptide YY. Endocrinology, 116, 2677–81.Google Scholar
  9. Andrews, P.C., Pubols, M.N., Hermodson, M.A., Sheares, B.T. and Dixon, J.E. (1984b) Structure of the 22-residue somatostatin from catfish. An O-glycosylated peptide having multiple forms. J. Biol. Chem., 259, 13267–72.Google Scholar
  10. Andrews, P.C. and Ronner, P. (1985) Isolation and structures of glucagon and glucagon-like peptide from catfish pancreas. J. Biol. Chem., 260, 3910–14.Google Scholar
  11. Baskin, D.G., Figlewicz, D.P., Woods, S.C., Porte, D., Jr. and Dorsa, D.M. (1987) Insulin in the brain. Annu. Rev. Physiol., 49, 335–47.Google Scholar
  12. Bassas, L., Lesniak, M.A., Girbau, M. and de Pablo, F. (1987) Insulin-related receptors in the early chick embryo: from tissue patterns to possible functions. J. Exp. Zool. Suppl. 1, 299–307.Google Scholar
  13. Bataille, D., Jarrouse, C., Kervran, A., Depigny, C. and Dubrasquet, M. (1986) The biological significance of ‘enteroglucagon’. Present status. Peptides, Suppl. 1, 37–42.Google Scholar
  14. Bauer, F.E., Ginsberg, L., Veneticou, M., Adrian, T.E. and Bloom, S.R. (1986) Galanin: a possible diabetogenic peptide? Can. J. Physiol. Pharmacol. Suppl. Gastrointestinal Hormones, 96.Google Scholar
  15. Bell, G.I., Santerre, R.F. and Mullenbach, G.T. (1983) Hamster preproglucagon contains the sequence for glucagon and two related peptides. Nature, Lond., 302, 716–18.Google Scholar
  16. Bern, H.A., Pearson, D., Larson, B.A. and Nishioka, R.C. (1985) Neurohormones from fish tails - The caudal neurosecretory system. Recent Progr. Horm. Res., 41, 533–52.Google Scholar
  17. Bernstein, H.G., Dorn, A., Reiser, M. and Ziegler, M. (1984) Cerebral insulin-like immunoreactivity in rats and mice. Drastic decline during post natal ontogenesis. Acta Histochem, 74, 33–6.Google Scholar
  18. Bhathena, S.J. (1987) Insulin receptors. In Peptide Hormone Receptors (eds M.Y. Kalimi and J.R. Hubberd), Walter de Gruyter, Berlin, pp. 179–285.Google Scholar
  19. Buchan, A.M.J. (1985) Regulatory peptides in the amphibian pancreas. Can. J. Zool., 63, 2121–4.Google Scholar
  20. Budd, G.C., Pansky, B. and Cordell, B. (1986) Detection of insulin synthesis in mammalian anterior pituitary cells by immunohistochemistry and demonstration of insulin-related transcripts by in situ RNA-DNA hybridization. J. Histochem. Cytochem., 34, 673–8.Google Scholar
  21. Carpentier, J.-L., Gorden, P., Robert, A. and Orci, L. (1986) Internalization of polypeptide hormones and receptor recycling. Experientia, 42, 734–44.Google Scholar
  22. Chance, R.E., Moon, N.E. and Johnson, M.G. (1979) Human pancreatic-polypeptide (HPP) and bovine pancreatic-polypeptide (BPP). In Methods of Hormone Radioimmunoassay (eds B.M. Jaffe and H.R. Behlman), Academic Press, New York, pp. 657–72.Google Scholar
  23. Clark, J.T., Kalra, P.S. and Kalra, S.P. (1985) Neuropeptide Y stimulates feeding but inhibits sexual behaviour in rats. Endocrinology, 117, 2435–42.Google Scholar
  24. Colca, J.R. and Hazelwood, R.L. (1976) Pancreatectomy in the chicken: Does an extra-pancreatic source of insulin exist? Gen. Comp. Endocrinol., 28, 151–62.Google Scholar
  25. Conlon, J.M., Agoston, D.V. and Thim, L. (1985a) An elasmobranchian somatostatin: primary structure and tissue distribution in Torpedo marmorata Gen. Comp. Endocrinol., 60, 406–13.Google Scholar
  26. Conlon, J.M., Ballmann, M. and Lamberts, R. (1985b) Regulatory peptides (glucagon, somatostatin, substance P and VIP) in the brain and gastrointestinal tract of Ambystoma mexicanum. Gen. Comp. Endocrinol, 58, 150–8.Google Scholar
  27. Conlon, J.M., Dafgard, E., Falkmer, S. and Thim, L. (1987a) A glucagon-like peptide, structurally related to mammalian oxyntomodulin, from the pancreas of an holocephalan fish, Hydrolagus colliei. Biochem. J., 245, 851–5.Google Scholar
  28. Conlon, J.M., Davis, M.S. and Thim, L. (1987b) Primary structure of insulin and glucagon from the flounder (Platichthys flesus)Gen. Comp. Endocrinol, 66, 203–9.Google Scholar
  29. Conlon, J.M., Falkmer, S. and Thim, L. (1987c) Primary structures of three fragments of proglucagon from the pancreatic islets of the daddy sculpin (Cottus scorpius)Eur. J. Biochem., 164, 117–22.Google Scholar
  30. Conlon, J.M., Hansen, H.F. and Schwartz, T.W. (1985c) Primary structure of glucagon and a primary sequence of oxyntomodulin (glucagon-37) from the guinea pig. Regul. Pept., 11, 309–20.Google Scholar
  31. Conlon, J.M., O’Toole, L. and Thim, L. (1987d) Primary structure of glucagon from the gut of the common dogfish (Scyliorhinus canicula)FEBS Lett., 214, 50–6.Google Scholar
  32. Conlon, J.M., Schmidt, W.E., Gallwitz, B., Falkmer, S. and Thim, L. (1986) Characterization of an amidated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius)Regul Pept., 16, 261–8.Google Scholar
  33. Conlon, J.M. and Thim, L. (1985) Primary structure of glucagon from an elasmobranchian fish Torpedo marmorata. Gen. Comp. Endocrinol., 60, 398–405.Google Scholar
  34. Cutfield, S.M., Carne, A. and Cutfield, J.F. (1987) The amino-acid sequences of sculpin islet somatostatin-28 and peptide YY. FEBS Lett., 214, 57–61.Google Scholar
  35. Czech, M.P. and Massague, J. (1982) Subunit structure and dynamics of the insulin receptor. Fed. Proc., 41, 2719–23.Google Scholar
  36. de Pablo, F., Girbau, M., Gomez, J.A., Hernandez, E. and Roth, J. (1985) Insulin antibodies retard and insulin accelerates growth and differentiation in early embryos. Diabetes, 34, 1063–7.Google Scholar
  37. de Pablo, F., Roth J., Hernandez, E. and Pruss, R.B. (1982) Insulin is present in chicken eggs and early chick embryos. Endocrinology, 11, 1909–16.Google Scholar
  38. Dockray, G.J. (1987) Physiology of enteric neuropeptides. In Physiology of the Gastrointestinal Tract, 2nd edn (ed. L.R. Johnson), Raven Press, New York, pp. 41–66.Google Scholar
  39. Dorn, A., Bernstein, H.-G., Rinne, A., Ziegler, M., Hahn, H.-J. and Ansorge, S. (1983) Insulin- and glucagon-like peptides in the brain. Anat. Ree., 207, 69–77.Google Scholar
  40. Dunning, B.E., Åhren, B., Veith, R.C., Böttcher, G., Sundler, F. and Taborsky, G.T., Jr. (1986) Galanin: a novel pancreatic neuropeptide. Am. J. Physiol, 251, E127-E133.Google Scholar
  41. El-Etr, M., Schorderet-Slatkine, S. and Baulieu, E.E. (1979) Meiotic maturation in Xenopus laevis oocytes initiated by insulin. Science, 205, 1397–9.Google Scholar
  42. Elliott, W.M. and Youson, J.H. (1986) Immunocytochemical localization of insulin and somatostatin in the endocrine pancreas of the sea lamprey, Petromyzon marinus L., at various stages of its life cycle. Cell Tissue Res., 243, 629–34.Google Scholar
  43. El-Salhy, M. (1984) Immunocytochemical investigation of the gastro-enteropancreatic (GEP) neurohormonal peptides in the pancreas and gastrointestinal tract of the dogfish Squalus acanthias. Histochemistry, 80, 193–205.Google Scholar
  44. El-Salhy, M., Grimelius, L., Emson, P.C. and Falkmer, S. (1987) Polypeptide YY-and neuropeptide Y-immunoreactive cells and nerves in the endocrine and exocrine pancreas of some vertebrates: an onto- and phylogenetic study. Histochem. J., 19, 111–17.Google Scholar
  45. Emdin, S.O., Steiner, D.F., Chan, S.J. and Falkmer, S. (1985) Hagfish insulin: evolution of insulin. In Evolutionary Biology of Primitive Fishes (eds R.E. Foreman, A. Gorbman, J.M. Dodd and R. Olsson), Plenum, New York, pp. 363–78.Google Scholar
  46. Epple, A. (1987) Pancreatic islet hormones. In Vertebrate Endocrinology: Fundamentals and Biomedical Implications (eds P.K.T. Pang, M.T. Schreibman and A. Gorbman), Academic Press, New York, Vol. 2, pp. 103–19.Google Scholar
  47. Epple, A. and Brinn, J.E. (1976) New perspectives in comparative islet research. In The Evolution of Pancreatic Islets (eds T.A.I. Grillo, L. Leibson and A. Epple), Pergamon Press, Oxford, pp. 83–95.Google Scholar
  48. Epple, A. and Brinn, J.E. (1986) Pancreatic islets. In Vertebrate Endocrinology: Fundamentals and Biomedical Implications (eds P.K.T. Pang, M.T. Schreibman and A. Gorbman), Academic Press, New York, Vol. 1, pp. 279–317.Google Scholar
  49. Epple, A. and Brinn, J.E. (1987) The Comparative Physiology of the Pancreatic Islets, Springer-Verlag, Berlin.Google Scholar
  50. Falkmer, S. (1985a) Comparative morphology of pancreatic islets in animals. In The Diabetic Pancreas, 2nd edn (eds B.W. Volk and E.R. Arquilla), Plenum, New York, pp. 17–52.Google Scholar
  51. Falkmer, S. (1985b) Phylogenetical aspects of the brain-gut axis, with special reference to islet hormones in invertebrates and lower vertebrates. In Neurosecretion and the Biology of Neuropeptides (eds H. Kobayashi, H.A. Bern and A. Urano), Japan Scientific Press, Tokyo, pp. 317–25.Google Scholar
  52. Falkmer, S., Dåfgard, E., El-Salhy, M., Engström, W., Grimelius, L. and Zetterberg, A. (1985) Phylogenetical aspects of islet hormone families: a mini-review with particular reference to insulin as a growth factor and to the phylogeny of PYY and NPY immunoreactive cells and nerves in the endocrine and exocrine pancreas. Peptides, 6 (Suppl. 3), 315–20.Google Scholar
  53. Falkmer, S., El-Salhy, M. and Titlbach, M. (1984) Evolution of the neuroendocrine system in vertebrates. A review with particular reference to the phylogeny and postnatal maturation of the islet parenchyma. In Evolution and Tumor Pathology of the Neuroendocrine System (eds S. Falkmer, R.H. Håkanson and F. Sundler), Elsevier, Amsterdam, pp. 59–87.Google Scholar
  54. Falkmer, S. and Van Noorden, S. (1983) Ontogeny and phylogeny of the glucagon cell. Handb. Exp. Pharmacol, 66/I, 81–119.Google Scholar
  55. Galloway, S.M. and Cutfield, J.F. (1988) Insulin-like material from the digestive tract of the tunicate Pyura pachidermatina (sea tulip). Gen. Comp. Endocrinol., 69, 106–13.Google Scholar
  56. Gapp, D. A. and Kenney, M.P. (1985) The gastro-entero-pancreatic system of the turtle,Chrysemys picta. Peptides, 6 (Suppl. 1), 347–52.Google Scholar
  57. Ghiglione, M., Blazquez, E., Uttenthal, L.O., de Diego, J.G., Alvarez, E., George, S.K. and Bloom, S.R. (1985) Glucagon-like peptide-I does not have a role in hepatic carbohydrate metabolism. Diabetologia, 28, 920–1.Google Scholar
  58. Ghiglione, M., Uttenthal, L.O., George, S.K. and Bloom, S.R. (1984) How glucagon-like is glucagon-like peptide-I? Diabetologia, 27, 599–600.Google Scholar
  59. Goldfine, I.D. (1987) The insulin receptor: molecular biology and transmembrane signaling. Endocrinol. Rev., 8, 235–55.Google Scholar
  60. Håkanson, R. and Lundquist, I. (1971) Occurrence of insulin in rat duodenum and its depletion with alloxan. Experientia, 27, 1220–1.Google Scholar
  61. Håkanson, R., Wahlestedt, C., Ekblad, E., Edvinsson, L. and Sundler, F. (1986) Neuropeptide Y: coexistence with noradrenaline. Functional implications. Progr. Brain Res., 68, 279–87.Google Scholar
  62. Hazelwood, R.L. (1981) Synthesis, storage, secretion and significance of pancreatic polypeptide in vertebrates. In The Islets ofhangerhans, Biochemistry, Physiology and Pathology, (eds S.J. Cooperstein and D. Watkins), Academic Press, London, pp. 276–318.Google Scholar
  63. Hazelwood, R.L. (1984) Pancreatic hormones, insulin/glucagon molar ratios and somatostatin as determinants of avian carbohydrate metabolism. J. Exp. Zool., 232, 647–52.Google Scholar
  64. Heinrich, G., Gros, P. and Habener, J.F. (1984) Glucagon gene sequence. Four of six exons encode separate functional domains of rat pre-proglucagon. J. Biol. Chem., 259, 14082–7.Google Scholar
  65. Hilton, J.W., Plisetskaya, E.M. and Leatherland, J.F. (1988) Does oral 3,5,3’-triiodo-L-thyronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri)? Fish. Physiol. Biochem., 4, 113–20.Google Scholar
  66. Hobard, P.M., Crawford, R., Shen, Lu Ping, Pictet, R. and Rutter, W.J. (1980a) Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature, Lond., 288, 137–41.Google Scholar
  67. Hobard, P.M., Shen, Lu-Ping, Crawford, R., Pictet, R.L. and Rutter, W.J. (1980b) Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNAs from cloned cDNAs. Science, 210, 1360–3.Google Scholar
  68. Hoist, J.J., Ørskov, C., Vagn Nielsen, O. and Schwartz, T. (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–74.Google Scholar
  69. Hoosein, N.M. and Gurd, R.S. (1984) Human glucagon-like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett., 178, 83–6.Google Scholar
  70. Hoosein, N.M., Mahrenholtz, A.M., Andrews, P.C. and Gurd, R.S. (1987) Biological activities of catfish glucagon and glucagon-like peptide. Biochem. Biophys. Res. Commun., 143, 87–92.Google Scholar
  71. Horuk, R. and Olefsky, J.M. (1985) Post-binding events in insulin action. Molec. Cell. Endocrinol, 42, 1–20.Google Scholar
  72. Hulsebus, J.J. and Farrar, E.S. (1986) Purification and characterization of bullfrog insulin. Am. J. Zool, 26, 121.Google Scholar
  73. Ince, B.W. and So, S.T.C. (1984) Different secretion of glucagon-like and somatostatin-like immunoreactivity from the perfused eel pancreas in response to glucose. Gen. Comp. Endocrinol, 53, 389–97.Google Scholar
  74. Kaung, H.-L.C. and Elde, R. (1980) Distribution and morphometry quantitation of pancreatic endocrine cell types in the frog, Rana pipiens. Anat. Rec., 196, 173–81.Google Scholar
  75. Kauth, Th. and Metz, J. (1987) Immunohistochemical localization of glucagon-like peptide I. Histochemistry, 86, 509–15.Google Scholar
  76. Kerkerian, L., Guy, G., Lefévre, G. and Pelletier, G. (1985) Effects of neuropeptide Y (NPY) on the release of anterior pituitary hormones in the rat. Peptides, 6, 1201–4.Google Scholar
  77. Kimmel, J.R., Hayden, L.J. and Pollock, H.G. (1975) Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem., 250, 9369–76.Google Scholar
  78. Kimmel, J.R., Plisetskaya, E.M., Pollock, H.G., Hamilton, J.W., Rouse, J.B., Ebner, K.E. and Rawitch, A.B. (1986) Structure of a peptide from coho salmon endocrine pancreas with homology to neuropeptide Y. Biochem. Biophys. Res. Commun., 141, 1084–91.Google Scholar
  79. Kimmel, J.R., Pollock, H.G., Chance, R.E., Johnson, M.G., Reeve, J.R., Jr., Taylor, I.L., Miller, C. and Shively, J.E. (1984) Pancreatic polypeptide from rat pancreas. Endocrinology, 114, 1725–31.Google Scholar
  80. King, J.L. and Kahn, C.R. (1981) Non-parallel evolution of metabolic and growth promoting functions of insulin. Nature, Lond., 292, 644–6.Google Scholar
  81. King, J.A. and Millar, R.P. (1979) Phylogenetic and anatomical distribution of somatostatin in vertebrates. Endocrinology, 105, 1322–9.Google Scholar
  82. Lance, V., Hamilton, J.W., Rouse, J.W., Kimmel, J.R. and Pollock, H.G. (1984) Isolation and characterization of reptilian insulin, glucagon and pancreatic polypeptide: complete amino-acid sequence of alligator (Alligator mississippiensis) insulin and pancreatic polypeptide. Gen. Comp. Endocrinol., 55, 112–24.Google Scholar
  83. Langhorne, P. (1986) Somatostatin stimulates ACTH release in brown trout (Salmo trutta L.). Gen. Comp. Endocrinol, 61, 71–5.Google Scholar
  84. Leibush, B.N. (1983) Insulin receptors of the brain in evolution of vertebrates. Zh. Evol. Biochim. Physiol., 19, 403–13 (in Russian).Google Scholar
  85. Leibush, B.N. and Bondareva, V.M. (1981) Insulin receptor in the liver plasma membrane of scorpion fish, Scorpaena porcus, in comparison to the receptor in mammals. Zh. Evol. Biokhim. Fiziol., 17, 141–7 (in Russian).Google Scholar
  86. Le Roith, D., Hendricks, A., Lesniak, M.A., Rishi, S., Becker, K.L., Havrankova, J., Rosenzweig, J.L., Brownstein, M.J. and Roth, J. (1983) Insulin in brain and other extrapancreatic tissues of vertebrates and nonvertebrates. Adv. Metab. Disord., 10, 303–40.Google Scholar
  87. Le Roith, D. and Roth, J. (1984) Vertebrate hormones and neuropeptides in microbes: evolutionary origin of intercellular communication. In Frontiers in Neuroendocrinology (eds L. Martini and W.F. Ganong), Raven Press, New York, Vol. 8, pp. 1–25.Google Scholar
  88. Le Roith, D., Shiloach, J., Heffron, R., Rubinovitz, C., Tanenbaum, R. and Roth J. (1985) Insulin-related material in microbes: similarities and differences from mammalian insulin. Can. J. Biochem. Cell Biol., 63, 839–49.Google Scholar
  89. Le Roith, D., Shiloach, J., Roth, J. and Lesniak, M. (1980) Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eucaryotes. Proc. Natl Acad. Sci. USA, 77, 6184–8.Google Scholar
  90. Lindskog, S. and Ahren B. (1987) Galanin: effects on basal and stimulated insulin and glucagon secretion in the mouse. Acta Physiol. Scand., 129, 305–9.Google Scholar
  91. Lopez, L.C., Frazier, M.L., Su, C.-J., Kumar, A. and Saunders, G.F. (1983) Mammalian pancreatic preproglucagon contains three glucagon-related peptides. Proc. Natl. Acad. Sci. U.S.A., 80, 5485–9.Google Scholar
  92. Lund, P.K., Goodman, R.H., Dee, P.C. and Habener, J.F. (1983a) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. U.S.A., 79 , 345–9.Google Scholar
  93. Lund, P.K., Goodman, R.H., Montmini, M.R., Dee, P.C. and Habener, J.F. (1983b) Anglerfish islet preproglucagon II. J. Biol. Chem., 258, 3280–4.Google Scholar
  94. Mallat, A., Pavoine, C., Dufour, M., Lotersztajn, S., Bataille, D and Pecker, F. (1987) A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon. Nature, Lond., 325, 620–2.Google Scholar
  95. Marchant, T. A. (1987) The hypothalamic regulation of growth hormone secretion in the goldfish, Carassius auratus L. Ph.D. Thesis, University of Alberta, Edmonton.Google Scholar
  96. Marchant, T. A., Fraser, R. A., Andrews, P.C. and Peter, R.E. (1987) The influence of mammalian and teleost somatostatins on the secretion of growth hormone from goldfish (Carassius auratus L.) pituitary fragments in vitro. Regul. Pept., 17, 41–52.Google Scholar
  97. McDonald, J.K., Greiner, F., Bauer, G.E., Elde, R.P. and Noe, B.D. (1987) Separate cell types that express two different forms of somatostatin in anglerfish islets can be immunocytochemically differentiated. J. Histochem. Cytochem., 35, 155–62.Google Scholar
  98. Mialhe, P. (1976) The role of glucagon in birds and mammals. In The Evolution of Pancreatic Islets (eds T.A.I. Grillo, L. Leibson and A. Epple), Pergamon Press, Oxford, pp. 291–300.Google Scholar
  99. Mojsov, S., Heinrich, G., Wilson, I.B., Ravazzola, M., Orci, L. and Habener, J.F. (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J. Biol. Chem., 261, 11880–9.Google Scholar
  100. Mojsov, S., Weir, G.C. and Habener, J.F. (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest., 79, 616–19.Google Scholar
  101. Moltz, J.H. and McDonald, J.K. (1985) Neuropeptide Y: direct and indirect action on insulin secretion in the rat. Peptides, 6, 1155–9.Google Scholar
  102. Mommsen, T.P., Andrews, P.C. and Plisetskaya, E.M. (1987) Glucagon-like peptides activate hepatic gluconeogenesis. FEBS Lett., 219, 227–32.Google Scholar
  103. Moody, A.J. and Thim, L. (1983) Glucagon, glicentin and related peptides. Handb. Exp. Pharmacol., 66/1, 139–74.Google Scholar
  104. Morel, A., Glushankof, P., Gomez, C., Fafeur, V. and Cohen, P. (1984) Characterization of a somatostatin-28 containing the (Tyr-7, Gly-10) derivative of somatostatin-14: a terminal active product of prosomatostatin II processing in anglerfish pancreatic islets. Proc. Natl Acad. Sci. U.S.A., 81, 7003–6.Google Scholar
  105. Morley, J.E. (1987) Neuropeptide regulation of appetite and weight. Endocrinol. Rev., 8, 256–87.Google Scholar
  106. Muggeo, M., Ginsberg, B.H., Roth, J., Neville, D.M., de Meyts, P., Jr. and Kahn, C.R. (1979b). The insulin receptor in vertebrates is functionally more conserved during evolution than insulin itself. Endocrinology, 104, 1393–402.Google Scholar
  107. Muggeo, M., Van Obberghen, E., Kahn, C.R., Roth, J., Ginsberg, B.H., de Meyts, P., Emdin, S.O. and Falkmer, S. (1979a) The insulin receptor and insulin in the Atlantic hagfish. Diabetes, 28, 175–81.Google Scholar
  108. Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Susuki, A., Ishizaki, H., Mizoguchi, A., Fujiwara, Y. and Susuki, A. (1984) Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science, 226, 1344–5.Google Scholar
  109. Noe, B.D. and Andrews, P.C. (1986) Specific glucagon-related peptides isolated from anglerfish islets are metabolic cleavage products of (pre)proglucagon-II. Peptides, 7, 331–6.Google Scholar
  110. Noe, B.D., McDonald, K.J., Greiner, F. and Wood, J.G. (1986) Anglerfish islets contain NPY immunoreactive nerves and produce the NPY analog aPY. Peptides, 7, 147–54.Google Scholar
  111. Noe, B.D. and Spiess, J. (1983) Evidence for biosynthesis and differential post-translational proteolysis of different (pre)prosomatostatins in pancreatic islets. J. Biol Chem., 258, 1121–8.Google Scholar
  112. Nozaki, M., Miyata, K., Oota, Y., Gorbman, A. and Plisetskaya, E.M. (1987) Differentiated somatostatin-forming cells in the pancreas and brain of salmonid fishes. Proc. 1st Congr. Asia Oceania Soc. Comp. Endocrinol, Nagoya, University Corporation, pp. 140–1.Google Scholar
  113. Nozaki, M., Miyata, K., Oota, Y., Gorbman, A. and Plisetskaya, E.M. (1988a) Different cellular distributions of two somatostatins in brain and pancreas of salmonids, and their separate associations with insulin and glucagon secreting cells. Gen. Comp. Endocrinol, 69, 267–80.Google Scholar
  114. Nozaki, M., Miyata, K., Oota, Y., Gorbman, A. and Plisetskaya, E.M. (1988b) Colocalization of glucagon-like peptide and glucagon immunoreactivities in pancreatic islets and intestine of salmonids. Cell Tissue Res., 253, 371–5.Google Scholar
  115. O’Neil, G.S., Falkmer, S. and Thorndyke, M.C. (1986) Insulin-like immuno-reactivity in the neural ganglion of the ascidian Ciona intestinalis. Acta Zool. (Stockh.), 67, 147–53.Google Scholar
  116. Orci, L. (1984) Patterns of cellular and subcellular organization in the endocrine pancreas. The Sir Henry Dale lecture for 1983. J. Endocrinol, 102, 3–11.Google Scholar
  117. Ørskov, C., Hoist, J.J., Knuhtsen, S., Baldissera, F.G.A., Poulsen, S.S. and Nielsen, O.V. (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology, 119, 1467–75.Google Scholar
  118. Oyama, H., Martin, J., Sussman, K., Weir, G.C. and Permutt, A. (1981) The biological activity of catfish pancreatic somatostatin. Regul Pept., 1, 387–96.Google Scholar
  119. Palmer, T.N. and Ryman, B.E. (1972) Studies on oral glucose intolerance in fish. J. Fish. Biol, 4, 311–19.Google Scholar
  120. Pappas, T.N., Debas, H.T., Chang, A.M. and Tailor, I.L. (1986) Peptide YY release by fatty acids is sufficient to inhibit gastric emptying in dogs. Gastroenterology, 91, 1386–9.Google Scholar
  121. Patzelt, C. and Schiltz, E. (1984) Conversion of proglucagon in pancreatic alpha cells: the major end products are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon-like sequences. Proc. Natl Acad. Sci. U.S.A., 81, 5007–11.Google Scholar
  122. Plisetskaya, E.M. (1975) Hormonal regulation of carbohydrate metabolism in lower vertebrates. Nauka, Leningrad (in Russian) 215 pp.Google Scholar
  123. Plisetskaya, E.M. (1985) Some aspects of hormonal regulation of metabolism in agnathans. In Evolutionary Biology of primitive fishes (eds R.E. Foreman, A. Gorbman, J.M. Dodd and R. Olsson), New York, Plenum, pp. 339–61.Google Scholar
  124. Plisetskaya, E.M., Dickhoff, W.W., Paquette, T.C. and Gorbman, A. (1986a) The assay of salmon insulin in homologous radioimmunoassay. Physiol. Biochem. Fish., 1, 37–43.Google Scholar
  125. Plisetskaya, E.M., Ottolenghi, C. and Mommsen, T.P. (1987a) Salmon glucagon and glucagon-like peptide: effects on metabolism in fish. Gen. Comp. Endocrinol., 66, 36–7.Google Scholar
  126. Plisetskaya, E.M., Pollock, H.G. Elliott, W.M., Youson, J.H. and Andrews, P.C. (1988) Isolation and structure of lamprey (Petromyzon marinus) insulin. Gen. Comp. Endocrinol., 68, 46–55.Google Scholar
  127. Plisetskaya, E.M., Pollock, H.G., Rouse, J.B., Hamilton, J.W., Kimmel, J.R., Andrews, P.C. and Gorbman A. (1986c) Characterization of coho salmon (Oncorhynchuskisutch) islet somatostatins. Gen. Comp. Endocrinol., 63, 252–63.Google Scholar
  128. Plisetskaya, E.M., Pollock, H.G., Rouse, J.B., Hamilton, J.W., Kimmel, J.R. and Gorbman, A. (1985) Characterization of coho salmon (Oncorhynchus kisutch) insulin. Regul. Pept., 11, 105–16.Google Scholar
  129. Plisetskaya, E.M., Pollock, H.G., Rouse, J.B., Hamilton, J.W., Kimmel, J.R. and Gorbman, A. (1986b) Isolation and structure of coho salmon (Oncorhynchus kisutch) glucagon and glucagon-like peptide. Regul. Pept., 14, 57–67.Google Scholar
  130. Plisetskaya, E.M., Sundby, A. and Gorbman, A. (1987b) Unorthodox interrelations among pancreatic islet hormones in fish. Am. Zool., 27, 97A.Google Scholar
  131. Pollock, H.G. Kimmel, J.R., Ebner, K.E., Hamilton, J.W., Rouse, J.B., Lance, V. and Rawitch, A.B. (1988) Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin and glucagon-like peptide: amino acid sequences of oxyntomodulin and glucagon-like peptide. Gen. Comp. Endocrinol., 69, 133–40.Google Scholar
  132. Pollock, H.G., Kimmel, J.R., Hamilton, J.W., Rouse, J.B., Ebner, K.E., Lance, V. and Ravitch, A.B. (1987) Isolation and structures of alligator gar (Lepisosteus spatula) insulin and pancreatic polypeptide. Gen. Comp. Endocrinol., 67, 375–82.Google Scholar
  133. Poretsky, L. and Kalin, M.F. (1987) The gonadotropic function of insulin. Endocrinol. Rev., 8, 132–41.Google Scholar
  134. Pradayroll, L., Jornvall, H., Mutt, V. and Ribet, A. (1980) N-Terminally extended somatostatin: the primary structure of somatostatin-28. FEBS Lett., 109, 55–8.Google Scholar
  135. Premont, R.T. and Iyengar, R. (1987) Glucagon receptors: structure and function. In Peptide Hormone Receptors (eds M.Y. Kalimi and J.R. Hubbard), Walter de Gruyter, Berlin, pp. 129–285.Google Scholar
  136. Puro, D.G. and Agardh, E. (1984) Insulin-mediated regulation of neuronal maturation. Science, 225, 1170–2.Google Scholar
  137. Purvis, D., Plisetskaya, E. and Thorndyke, M.C. (1986) Insulin-like immune-reactive material in the brain of two primitive vertebrates. Regul. Pept., 15, 189.Google Scholar
  138. Rombout, J.H.W.M., Abad, M.E., Peeze Binkhorst, F.M. and Taverne-Thiele, J.J. (1987) Coexistence of pancreatic polypeptide (PP)- and glucagon-immuno-reactivity in pancreatic endocrine cells of mouse. Histochemistry, 87, 1–6.Google Scholar
  139. Ronner, P. and Scarpa, A. (1987) Secretagogues for pancreatic hormone release in the channel catfish (Ictalurus punctatus). Gen. Comp. Endocrinol., 65, 354–62.Google Scholar
  140. Rosen, O.M. (1987) After insulin binds. Science, 237, 1452–8.Google Scholar
  141. Rovainen, C.M. (1982) Neurophysiology. In The Biology of Lamprey (eds M.W. Hardisty and I.C. Potter) Academic Press, London, pp. 1–136.Google Scholar
  142. Saito, T., Kanno, T., Tatemoto, K. and Mutt, V. (1983) Dose-related effect of neuropeptide Y stimulating respiratory chain in the bullfrog brain. Biochem. Res., 4, Suppl. 173–8.Google Scholar
  143. Schmidt, W.E., Siegel, E.G. and Creutzfeldt, W. (1985) Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia, 28, 704–7.Google Scholar
  144. Schwartz, T. (1983) Pancreatic polypeptide: a unique model for vagal control of endocrine systems. J. Autonomic Nerv. Syst., 9, 99–111.Google Scholar
  145. Schwartz, T. and Tager, H.S. (1981) Isolation and biogenesis of a new peptide from pancreatic islets. Nature, Lond., 294, 589–91.Google Scholar
  146. Shemer, J., Perrotti, N., Roth, J. and Le Roith, D. (1987) Characterization of an endogenous substrate related to insulin and insulin-like growth factor-I receptors in lizard brain. J. Biol. Chem., 262, 3436–9.Google Scholar
  147. Sheridan, M.A. and Bern, H.A. (1986) Both somatostatin and the caudal neuropeptide, urotensin II, stimulate lipid mobilization from coho salmon liver incubated in vitro. Regul. Pept., 14, 333–44.Google Scholar
  148. Sheridan, M.A., Plisetskaya, E.M., Bern, H.A. and Gorbman, A. (1987) Effects of somatostatin-25 and urotensin II on lipid and carbohydrate metabolism of coho salmon. Oncorhynchus kisutch. Gen. Comp. Endocrinol., 66, 405–14.Google Scholar
  149. Shima, K., Hirota, M., Ohboshi, C., Sato, M. and Nishino, T. (1987) Release of glucagon-like peptide 1 immunoreactivity from the perfused rat pancreas. Acta Endocrinol., 114, 531–6.Google Scholar
  150. Shimizu, I., Hirota, M., Ohboshi, C. and Shima, K. (1987) Identification and localization of glucagon-like peptide I and its receptor in rat brain. Endocrinology, 121, 1076–82.Google Scholar
  151. Silva, P., Stoff, J.S., Leone, D.R. and Epstein, F.H. (1985) Mode of action of somatostatin to inhibit secretion by shark rectal gland. Am. J. Physiol., 249, R329-R334.Google Scholar
  152. Silvestre, R.A., Miralles, P., Monge, L., Moreno, P., Villanueva, M.L. and Marco, J. (1987) Effects of galanin on hormone secretion from the in situ perfused rat pancreas and on glucose production in rat hepatocytes in vitro. Endocrinology, 121, 378–81.Google Scholar
  153. Simon, J. and Le Roith, D. (1986) Insulin receptors in chicken liver and brain. Characterization of α and β subunit properties. Eur. J. Biochem., 158, 125–32.Google Scholar
  154. Solcia, E., Fiocca, R., Capella, C., Usellini, L., Sessa, F., Rindi, G., Schwartz, T.W. and Yanaihara, N. (1985) Glucagon- and PP-related peptides of intestinal L-cells and pancreatic/gastric A or PP-cells. Possible interrelationships of peptides and cell during evolution, fetal development and tumor growth. Peptides, 6 (Suppl. 3), 223–9.Google Scholar
  155. Sorokin, A.V., Petrenko, O.I., Kavsan, V.M., Kozlov, Y.I., Debabov, V.G. and Zlochevskij, M.L. (1982) Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA. Gene, 20, 367–76.Google Scholar
  156. Spiess, J. and Noe, B.D. (1985) Processing of an anglerfish somatostatin precursor to a hydroxylysine-containing somatostatin-28. Proc. Natl Acad. Sci. U.S.A., 82, 277–81.Google Scholar
  157. Stanley, B.G., Daniel, D.R., Chin, A.S. and Leibowitz, S.F. (1985) Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Peptides, 6, 1205–11.Google Scholar
  158. Stefan, Y. and Falkmer, S. (1980) Identification of four endocrine cell types in the pancreas of Cottus scorpius (Teleostei) by immunofluorescence and electron microscopy. Gen. Comp. Endocrinol., 42, 171–8.Google Scholar
  159. Stefan, Y., Ravazzola, M. and Orci, L. (1981) Primitive islets contain two populations of cells with different glucagon immunoreactivity. Diabetes, 30, 192–5.Google Scholar
  160. Steiner, D.F., Chan, S.J., Docherty, K., Emdin, S.O., Dodson, G.G. and Falkmer, S. (1984) Evolution of polypeptide hormones and their precursor processing mechanisms. In Evolution and Tumor Pathology of the Neuroendocrine System (eds S. Falkmer, R. Håkanson and F. Sundler), Elsevier, Amsterdam, pp. 203–23.Google Scholar
  161. Strosser, M.T., Harvey, S., Foltzer, C. and Mialhe, P. (1984) Comparative effects of somatostatin-28 and somatostatin-14 on basal growth hormone release and pancreatic function in immature ducks (Anas platyrhynchos). Gen. Comp. Endocrinol., 56, 265–70.Google Scholar
  162. Suarez, R. and Mommsen, T.P. (1987) Gluconeogenesis in teleost fishes. Can. J. Zool., 65, 1869–82.Google Scholar
  163. Taboada, C., Abalde, M., Suarez, M., Andres, D. and Fernandez, P. (1985) Effect of somatostatin on small intestine enzyme activities in rat and chick. Comp. Biochem. Physiol, 80A, 49–51.Google Scholar
  164. Tager, H.S., Markese, J., Spiers, R.D. and Kramer, K.J. (1975) Glucagon-like immunoreactivity in insect corpus cardiacum. Nature, Lond., 254, 707–8.Google Scholar
  165. Tatemoto, K. (1982) Isolation and characterization of peptide YY (PYY), a candidate gut homone that inhibits pancreatic exocrine secretion. Proc. Natl Acad. Sci. U.S.A., 79, 2514–18.Google Scholar
  166. Tatemoto, K., Carlquist, M. and Mutt, V. (1982) Neuropeptide Y-A novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature, Lond., 296, 659–60.Google Scholar
  167. Tatemoto, K., Efendic, S., Mutt, V., Makk, G., Feistner, G.J. and Barchas, J.D. (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature, Lond., 324, 476–8.Google Scholar
  168. Tatemoto, K., Rökaeus, Å., Jornvall, H., McDonald, T.J. and Mutt, V. (1983) Galanin — a novel biologically active peptide from porcine intestine. FEBS Lett, 164, 124–8.Google Scholar
  169. Thorpe, A. and Duve, H. (1984) Insulin- and glucagon-like peptides in insects and molluscs. Molec. Physiol, 5, 235–60.Google Scholar
  170. Thorpe, A. and Duve, H. (1985) Studies on the release of pancreatic hormones in cyclostomes and fishes in vitro. In Current Trends in Comparative Endocrinology (eds B. Lofts and W.N. Holmes), Hong Kong University Press, Hong Kong, Vol. 2, pp. 1055–9.Google Scholar
  171. Titlbach, M., Fait, K. and Falkmer, S. (1985) Postnatal maturation of the islet of Langerhans in sheep. Light microscopic, immunohistochemical, morphometric, and ultrastructural investigations with particular reference to the transient appearance of argyrophil, insulin immunoreactive cells. Diabetes Res., 2, 5–15.Google Scholar
  172. Tyler, C., Sumpter, J. and Bromage, N. (1987) The hormonal control of vitellogenin uptake into cultured oocytes of the rainbow trout. Abstr. 3rd Int. Symp. Reprod. Physiol Fish p. 142.Google Scholar
  173. Unger, R.H. (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia, 28, 574–8.Google Scholar
  174. Vaillant, C.R. and Lund, P.K. (1986) Distribution of glucagon-like peptide I in canine and feline pancreas and gastrointestinal tract. J. Histochem. Cytochem., 34, 1117–21.Google Scholar
  175. Van Noorden, S., Greenberg, J. and Pearse, A.G.E. (1972) Cytochemical and immunofluorescent investigations on polypeptide hormone localization in the pancreas and gut of the larval lamprey. Gen. Comp. Endocrinol, 19, 191–9.Google Scholar
  176. Van Noorden, S. and Varndell, I.A. (1987) Regulatory peptide immunocytochemistry at light- and electron microscopical levels. Experientia, 43, 724–34.Google Scholar
  177. Wang, Y.-Q., Plisetskaya, E., Baskin, D.G. and Gorbman, A. (1986) Immunocytochemical study of the pancreatic islets of the Pacific salmon Oncorhynchus kisutch. Zool. Sci., 3, 123–9.Google Scholar
  178. Young, W.S. (1986) Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides, 8, 93–7.Google Scholar
  179. Note added in proof: Publications closely related to the topic of this chapter, published in 1988:Google Scholar
  180. Andrews, P.C., Pollock, H.G., Elliott, W.M., Youson, J.H. and Plisetskaya, E.M. (1988) Isolation and characterization of a variant somatostatin-14 and two related somatostatins of 34 and 37 residues from lamprey (Petromyzon marinus)J. Biol. Chem. 263, 15809–14.Google Scholar
  181. Cordon, J.M., Askensten, U., Falkmer, S. and Tim, I. (1988) Primary structures of somatostatins from the islet organ of the hagfish suggest an anomalous pathway of posttranslational processing of prosomatostatin-1. Endocrinology, 122, 1855–59.Google Scholar
  182. Pollock, H.G., Hamilton, J.W., Rouse, J.B., Ebner, K.E. and Rawitch, A.B. (1988) Isolation of peptide hormones from the pancreas of the bullfrog (Rana catesbeiana). Amino acid sequences of pancreatic polypeptide, oxyntomodulin, and two glucagon-like peptides. J. Biol. Chem. 263, 9746–51.Google Scholar
  183. Smit, A.B., Vreugdenhil, E. Ebberink, R.H.M., Geraerts, W.P.M., Klootwijk, J. and Joosse, J. (1988) Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature, 331, 535–38.Google Scholar

Copyright information

© Chapman and Hall 1989

Authors and Affiliations

  • Erika M. Plisetskaya

There are no affiliations available

Personalised recommendations