Preparation and Mechanical Properties of Aramid Fibres from Block Copolymers

  • B. Helgee
  • C.-H. Andersson

Abstract

Aramid block copolymers containing stiff and flexible segments have been synthesized, spun into fibres and subjected to tensile testing. Both the Young’s modulus and the tensile strength of the fibres decreases with increasing length of the flexible segment while the elongation at break increases. As spun fibres show a well defined yield point. Heat treatment of the fibres up to 500 °C results in a 2–3 times increase in Young’s modulus while the elongation at break decreases. The fibre containing the longest flexible blocks becomes very brittle upon heat treatment at 500 °C.

Keywords

Block Copolymer Aramid Fibre Flexible Segment Terephthaloyl Chloride Polymer Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeTeresa S.J., Porter R.S., Farris R.J., J. Mater. Sci., 23 (1988) 1886–1894CrossRefGoogle Scholar
  2. 2.
    Allen S.R., J. Mater. Sci., 22 (1987) 853–859CrossRefGoogle Scholar
  3. 3.
    Dobb M.G, Johnson D.J. and Saville B.P., Polymer, 22 (1981) 960–965CrossRefGoogle Scholar
  4. 4.
    Li L.-S., Allard L.F. and Bigelow W.C., J. Macromol. Sci.-Phys., B22 (1983) 269–290CrossRefGoogle Scholar
  5. 5.
    Morgan R. J., Pruneda C.O. amd Steele W. J., J. Polym. Sci., Polym. Phys. Ed., 21 (1983) 1757–1783CrossRefGoogle Scholar
  6. 6.
    Wagner H.D., J. Mater. Sci. Lett., 5 (1986) 439–440CrossRefGoogle Scholar
  7. 7.
    Ericksen R.H., Polymer, 26 (1985) 733–746CrossRefGoogle Scholar
  8. 8.
    Northolt M.G. and v. d. Hout R., Polymer, 26 (1985) 310–316CrossRefGoogle Scholar
  9. 9.
    Skelton J., J. Textile Inst., 56 (1965) T454–T464CrossRefGoogle Scholar
  10. 10.
    Preston J., Smith R.W. Black W.B. and Tolbert T.L., J. Polym. Sci. Part C, 22 (1969) 855–865Google Scholar
  11. 11.
    Preston J, Kriegbaum W.R. and Kotek R., J. Polym. Sci. Polym. Chem. Ed., 20 (1982) 3241–3249CrossRefGoogle Scholar
  12. 12.
    Andersson C.-H. and Warren R., in “Advances in Composite Materials”, (Bunsell A. et. al., eds.) (1980) 1129–1130, AMAC — Pergamon, Oxford.Google Scholar
  13. 13.
    Knoff W.F., J. Mater. Sci. Lett., 5 (1987) 1392–1394CrossRefGoogle Scholar
  14. 14.
    Smith P. and Termonia Y., Polymer Commun., 30 (1989) 66–68Google Scholar
  15. 15.
    Hindeleh A.M. and Hosemann R., J. Phys. C, 21 (1988) 4155–4170CrossRefGoogle Scholar
  16. 16.
    Hindeleh A.M. and Abdo Sh.M., Polymer, 30 (1989) 218–224CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • B. Helgee
    • 1
  • C.-H. Andersson
    • 2
  1. 1.Dept of Polymer TechnologyChalmers University of TechnologyGöteborgSweden
  2. 2.Swedish Institute for Textile ResearchGöteborgSweden

Personalised recommendations