Advertisement

Influence of Safimax Fibres on Microstructure and Microsegregation in an Aluminium Alloy

  • Q. Li
  • D. G. McCartney
  • A. M. Walker

Abstract

The solidification behaviour of a fibre reinforced Al-6 wt.% Cu alloy containing 30 vol. % of 3µm diameter, semi-continuous, aligned alumina fibres has been studied. Results are presented to show the influence of fibres on microstructure and matrix microsegregation. The effect of total solidification time, θt, on solidification behaviour was examined for 1 < θt < 520s. When θt >100s the final matrix microstructure is non-dendritic and CuAl2 is located principally at the fibre matrix interface. When θ ≃ 1s it was observed that the final microstructure is dendritic, with a periodic segregation pattern and the CuAl2 is more dispersed. The matrix composition becomes more uniform and the minimum composition rises as θt increases. The microsegregation is analysed theoretically using a simple analytical model.

Keywords

Solidification Behaviour Squeeze Casting Simple Analytical Model Fibre Matrix Interface Eutectic Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trumper R. and Scott V., ECCM 3, eds. A.R. Bunsell, P. Lamicq, A. Massiah, Elsevier App. Sci., 1989, pp.139 – 144.Google Scholar
  2. 2.
    Cornie J.A., Mortensen A., Gungor M.N. and Flemings M.C., ICCM V, eds. W.C. Harrigan, J. Strife and A.K. Dhingra, TMS-AIME, 1986, pp.809–823,Google Scholar
  3. 3.
    Mortensen A., Gungor M.N., Cornie J.A. and Flemings M.C., J. of Metals, March 1986, vol. 38, pp. 30 – 35.Google Scholar
  4. 4.
    Cornie J.A., Mortensen A. and Flemings M.C., ICCM VI, eds. F.L. Matthews, N.C.R. Buskel, J.M. Hodginson and J. Morton, Elsevier App. Sci., 1987, pp. 2.297 – 2.319.Google Scholar
  5. 5.
    Mortensen A., Cornie J.A. and Flemings M.C., Metall. Trans. A, vol. 19A, 1988, pp.709–721.Google Scholar
  6. 6.
    Idem, J. of Metals, vol. 40, Feb. 1988, pp. 12–19.Google Scholar
  7. 7.
    Li Q.F., McCartney D.G., and Walker A.M., to be published.Google Scholar
  8. 8.
    Kurz W. and Fisher D.J., ‘Fundamentals of Solidification’, Trans Tech Publishers, 1986.Google Scholar
  9. 9.
    Kirkwood D.H., Mat. Sci. and Eng., vol. 65, 1984, pp. 101–110.CrossRefGoogle Scholar
  10. 10.
    Hunt J.D. and McCartney D.G., Acta Metall, vol. 35, 1987, pp. 89–99.CrossRefGoogle Scholar
  11. 11.
    Clyne T.W. and Kurz W., Metall. Trans. A, vol. 12A, 1981, pp. 965–971.Google Scholar
  12. 12.
    Brody H.D. and Flemings M.C., Trans. AIME, vol. 236, 1966, pp. 615 – 623.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Q. Li
    • 1
  • D. G. McCartney
    • 1
  • A. M. Walker
    • 2
  1. 1.Dept of Materials ScienceUniversity of LiverpoolLiverpoolGreat Britain
  2. 2.ICI Advanced MaterialsThe Heath Runcorn ChesshireGreat Britain

Personalised recommendations