High Temperature Low Cycle Fatigue of a SiC/Ti Matrix Composite


Low cycle fatigue studies have been conducted on SiC continuous fiber reinforced Ti-6Al-4V in air at temperatures up to 500 °C. Through the use of beachmarks and fatigue striations, the progress of the crack front could be retraced using the scanning electron microscope. The results of these morphological studies indicate that during crack propagation, the crack bows out between the fibers analogous to dislocation bowing. At higher temperature there is an increased tendency for interlaminar cracking and the appearance of stepped crack surfaces. These observations have important consequences in the development of fracture mechanics models for MMC life prediction.


Crack Front Linear Elastic Fracture Mechanic Life Prediction Fatigue Striation Fracture Mechanic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.T. Bhatt and H.H. Grime, “Fatigue Behavior of SiC Reinforced Titanium Composites”, NASA Technical Memorandum 79223 (1979).Google Scholar
  2. 2.
    D. Davidson et al, in “Mech. Behavior of Metal-Matrix Composites” (J. Hack, M. Amateau, eds.)(1983) 117–142, TMS-AIME, Warrendale, PA.Google Scholar
  3. 3.
    M. Gouda, K.M. Prewo and A.J. McEvily, in “Fatigue of Fibrous Composite Materials”, ASTM STP 723 (1981) 101–115, ASTM, Philadelphia.CrossRefGoogle Scholar
  4. 4.
    W.S. Johnson, in “Long Term Behavior of Composites”, ASTM STP 813 (T.K. O’Brien) (1983) 160–176, ASTM, Philadelphia.CrossRefGoogle Scholar
  5. 5.
    W. Wei, in “Fundamental Relationships Between Microstructure and Mechanical Properties of Metal-Matrix Composites” (P.K. Liaw and M.N. Gungor, eds.) (1990) 353–370, TMS of AIME, Warrendale, PA.Google Scholar
  6. 6.
    G.W. König and E.E. Affeldt, in “Proc. 2nd. Int. Conf. on Low-Cycle Fatigue and Elasto-Plastic Behavior of Materials” (K.T. Rie, ed.) (1987) 673–679, DVM, Berlin.Google Scholar
  7. 7.
    D.L. Davidson, in “Proc. Fifth Int. Conf. on Composite Materials ICCM-V” (W. Harrigan, Jr. et al, eds.) (1985) 175–189, TMS of AIME, Warrendale, PA.Google Scholar
  8. 8.
    D.L. Davidson, in “Fundamental Relationships Between Microstructure and Mechanical Properties of Metal-Matrix Composites” (P.K. Liaw and M.N. Gungor, eds.) (1990) TMS of AIME, Warrendale, PA.Google Scholar
  9. 9.
    K.S. Chan and D.L. Davidson, Eng. Frac. Mech. 33 (1989) 451–466.CrossRefGoogle Scholar
  10. 10.
    A. Daimaru, T. Hata and M. Taya, in “Recent Advances in Composites in the United States and Japan”, ASTM STP 864 (J.R. Vinson and M. Taya, eds.) (1985) 505–521, ASTM, Philadelphia.CrossRefGoogle Scholar
  11. 11.
    J.A. Nairn, in “Proc. American Society for Composites 2nd Tech. Conf.” (1987) 58–66, Technomic Pub. Co., Lancaster, PA.Google Scholar
  12. 12.
    J.G. Morley, in “High-Performance Fibre Composites” (1987) Ch. 5, 151–171, Academic Press, London.Google Scholar
  13. 13.
    C. Chiang, W. Chen and K. Chen, Eng. Frac. Mech. 28 (1987) 301–307.CrossRefGoogle Scholar
  14. 14.
    G. Newaz and J.-Y. Yung, Eng. Frac. Mech. 29 (1988) 483–495.CrossRefGoogle Scholar
  15. 15.
    G. Dvorak and W. Johnson, Int J of Fracture 16 (1980) 16 585–607.CrossRefGoogle Scholar
  16. 16.
    K.L. Reifsnider and W.W. Stinchcomb, in “Composite Materials: Fatigue and Fracture”, ASTM STP 907 (H.T. Hahn, ed.)(1986) 298–313, ASTM, Philadelphia.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • W. Wei
    • 1
  1. 1.MTU Motoren Und Turbinen Union GMBHMünchen 50West-Germany

Personalised recommendations