Micromechanics as a Basic Milestone in the Fibre Reinforced Polymers and Metals Macromechanics Understanding

  • J. P. Favre


Examples are developed that illustrate how micromechanics can give support to more comprehensive models of the composites mechanical behaviour including quantitative aspeas. After the importance of intercorrelating the various methods of measuring interface parameters has been emphasised, the contribution of micromechanics to the prediction of the tensile strength of unidirectional silicon carbide/ metal com posites and the residual strength of notched carbon/resin laminates are discussed.


Fibre Reinforce Polymer Residual Strength Interfacial Shear Interfacial Shear Stress Unidirectional Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1 -.
    Bader M.G., Science & Eng.of Comp.Mat.,1,1(1988)1–1 1.CrossRefGoogle Scholar
  2. 2 -.
    Tirosh J., Katz E., Iifschuetz G. & Tetelman A. S., Eng. Fract. Mechanics, 12(1979)267–277.CrossRefGoogle Scholar
  3. 3 -.
    Nicholls D. J. in “Composite Materials:Testing & Design (7th Con-ference)”ASTM STP 893, ed. by J. M. Whitney (ASTM, Philadelphia, 1986) 109114.Google Scholar
  4. 4 -.
    Favre J. -P. in “Interfacial Phenomena in Composite Materials’89”,ed. by F.R Jones (Butterworth, London, 1989) 7–12.Google Scholar
  5. 5 -.
    Favre J. -P., Sigety P. & Jacques D., J. of Mat. Science (in press).Google Scholar
  6. 6 -.
    Piggott M.R., Gomp.Science&Tech.30(1987)295–306.Google Scholar
  7. 7 -.
    Eraser W. A., Ancker F. H., DiBenedetto A. T. & ELbirli B., Polymer Gxnp. 4,4,(1983)238–248.Google Scholar
  8. 8 -.
    Netravali A.N., Henstenburg R.B., Phoenix S. L. & Schwartz P., Polymer Gbmp. 10,4(1989)226–241.CrossRefGoogle Scholar
  9. 9 -.
    Barry P.W., J. of Mat. Science 13(1978)2177–2187.CrossRefGoogle Scholar
  10. 10 -.
    Ochiai S. & Osamura K. in “Composites’ 86: Recent Advances in Japan and the United States”, Proceed. Japan-US CCM-III, Tokyo, 1986, ed. by K. Kawata, S. Umekawa & A. Kobayashi, 751 –759.Google Scholar
  11. 11 -.
    Manders P. W., Bader M.G. & Chou T. W., Fibre Science & Tech. l7(1982)183–204.Google Scholar
  12. 12 -.
    Wadsworth N. J. & Spilling I., Brit. J. Appl. Phys. (J. Phys. D), ser 2,1 (1968)1049–1058.Google Scholar
  13. 13 -.
    Wagner H.D. & Steenbakker L.W., J. of Mat. Science (in press).Google Scholar
  14. 14 -.
    Molliex L., Thesis Ecole antrale de Paris (1990).Google Scholar
  15. 15 -.
    Le Petitcorps Y., Pailler R. & Naslain R., Comp. Science &Tech. 35(1989)207–214.CrossRefGoogle Scholar
  16. 16 -.
    Hamann R., Fougères R., Rouby D., Fleischmann P., Gobin P. F., Lonca-Hugot F. &Boivin M, Mémoires & Budes Scient. Revue de Métall, décembre 1989,789–797.Google Scholar
  17. 17 -.
    Carlsson L. A., Aronsson C.G. & Bäcklund J., J. of Mat. Science 24(1989)1679–1682.Google Scholar
  18. 18 -.
    Vautey P. & Favre J. -P., Gbmp. Science &Tech. (in press).Google Scholar
  19. 19 -.
    Jacques D., Thesis Institut Polytechnique de Lorraine (1989).Google Scholar
  20. 20 -.
    Vautey P., Mérienne M.-C., Cottenot C. & Favre J.-P., cf ref.4,53–56.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • J. P. Favre
    • 1
  1. 1.Materials DepartmentONERAChatillonFrance

Personalised recommendations