Separation of Ruthenium and Molybdenum by Cation Exchange Chromatography on Ag 50W-X4 in a Nitric Acid-Ethylenediamine Mixture

  • T. N. van der Walt
  • P. J. Fourie
  • P. P. Coetzee

Abstract

The 99Mo-99Tc-generator is widely used in nuclear medicine. 99Mo can be obtained from the fission of 235U in a nuclear reactor. 103Ru is one of the numerous fission products to be separated from 99Mo. 103Ru can easily be separated from 99Mo by cation exchange chromatography on AG 50W-X4 in a nitric acid- ethylenediamine mixture. Ruthenium is sorted as a positively charged ruthenium-ethylenediamine complex from a mixture containing 0,10M nitric acid and 0,01M ethylenediamine or 1,0M nitric acid and 0,10M ethylenediamine. Molybdenum passes through the resin column and can be separated from the ethylenediamine by ion exchange chromatography on aluminium oxide or manganese dioxide.

Keywords

Manganese Dioxide Elution Curve Sodium Molybdate Hydrobromic Acid Cation Exchange Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lavi, N., The study of conditions for the preparation and application of 99Mo - 99mTc generators starting from irradiated molybdenum metal. J. Radional. Chem., 1978, 42, 25–34CrossRefGoogle Scholar
  2. 2.
    Milenkovic, S. M., Vucina, J. L., Jacimovic, Lj. M., Karanfilov, E.S. and Memodivic, T. V., Universal 99mTc generator for human use. Isotopenpraxis, 1982, 18, 85–87Google Scholar
  3. 3.
    Brown, J. L. and Harris, O. A. Technetium-99m generator. Ger. Offen. 2,242,395 (Cl. C Olg), 15 Mar 1973, US Appl. 177,249, 2 Sep 1971, 25 ppGoogle Scholar
  4. 4.
    Levin, V. I., Kozyreva - Alexandrova, L. S., Sokolova, T. N. and Bagenova, T. L. A new 99mTc generator of higher activity. Int. J. Appl. Radiat. Isot., 1979, 30, 450–451CrossRefGoogle Scholar
  5. 5.
    Meloni, S. and Brandone, A. a new technetium-99m generator using manganese dioxide. Int. J. Appl. Radiat. Isot., 1968, 19, 164–166CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya, D. K. and De, A. Separation of carrier-free 99mTc from 99Mo and 144Pr from 144Ce over a column of zirconium arsenate. Sep. Science Tehnology, 1982, 17, 925–933CrossRefGoogle Scholar
  7. 7.
    Fourie, P. J. Progress in the development of technetium-99m technology in South Africa. In Technetium-99m Technology, ed. M. Beyers, Third Congress of the S A Society of Nuclear Medicine, Bloemfontein, 14–17 August 1988, pp 3–10Google Scholar
  8. 8.
    Ejaz, M. Separation of molybdenum (VI) from uranium (VI) and fission products. Radiochimica Acta, 1975, 22, 51–52Google Scholar
  9. 9.
    Salacz, J. Reprocessing of irradiated uranium-235 for the production of 99Mo, 131I, 133Xe radioisotopes. Revue IRE Tijdschrift, 1985, 9, 22–28Google Scholar
  10. 10.
    El-Garhy, M., Shehata, M. K. K. and El-Bayoumi, S. Selective separation of 99Mo from fission products in chloride media on activated alumina. J. Radioanal. Chem., 1972, 10, 35–40CrossRefGoogle Scholar
  11. 11.
    Arino, H. and Kramer, H. H. Separation and purification of radiomolybdenum from a fission product mixture using silver-coated carbon granules. Int. J. Appl. Radiat. Isot., 1978, 29, 97–102CrossRefGoogle Scholar
  12. 12.
    Cheng, W.L., Lee, C. S., Chen, C. C., Wang Y. M. and Ting, G. Study of the separation of molybdenum-99 and recycling of uranium to water boiler reactor. Appl. Radiat. Isot., 1989, 40, 315–324CrossRefGoogle Scholar
  13. 13.
    Münze, R., Hladik, O., Bernard, G., Boessert, W. and Schwarzbach, R. Large scale production of fission 99Mo by using fuel elements of a research reactor as starting material. Int. J. Appi. Radiat. Isot., 1984, 35, 749–754.CrossRefGoogle Scholar
  14. 14.
    Sameh, A. Production of molybdenum-99. PROCEEDINGS International Symposium on Isotope Applications, Taipei, Taiwan, Republic of China, December 4–5, 1986, 291–303.Google Scholar
  15. 15.
    Weinert, C. H. S. W. and Strelow, F. W. E. Cation exchange behaviour of the platinum group and some other rare elements in hydrobromic acid-thiourea- acetone media. Talanta, 1983, 30, 755–760.CrossRefGoogle Scholar
  16. 16.
    Weinert, C. H. S. W. and Strelow, F. W. E. The influence of thiourea on the cation-exchange behaviour of various elements in dilute nitric and hydrochloric acids. Talanta, 1986, 33, 481–487.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publisher LTD and United Kingdom Atomic Energy Authority 1990

Authors and Affiliations

  • T. N. van der Walt
    • 1
  • P. J. Fourie
    • 1
  • P. P. Coetzee
    • 2
  1. 1.Isotope Production CentreAtomic Energy Corporation of South Africa Ltd.PretoriaRepublic of South Africa
  2. 2.Department of ChemistryRand Afrikaans UniversityJohannesburgRepublic of South Africa

Personalised recommendations