Theory and Verification Tests of the Nb-Ti Ribbon Thermally Controlled Switch for 50 Hz Applications

  • I. Hlásnik
  • J. Kokavec
  • N. V. Markovsky
  • O. A. Shevchenko


Theoretical analysis of the influence of the Nb-Ti ribbon thickness/ of the bath and working temperatures on the recovery time constant and the losses of a thermally controlled superconducting switch (TCSS) is presented. It reveals the possibility to increase the repetition frequency of such switch in the range of the industrial 50–60 Hz frequency. Successful verification tests of a thermally controlled switch made from 20 um thick, 10 mm wide and 11 cm long Nb-Ti ribbon in a half-wave rectifier mode at 50 Hz have been performed.


Verification Test Ribbon Thickness Recovery Time Consta Rectifier Mode Superconductor Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ten Kate. H. H. J., Bunk, P. B., Britton R. B., Van de Klundert. L. C. I. M., High current and high power superconducting rectifiers Cryogenics 1981, 21, 291.CrossRefGoogle Scholar
  2. 2.
    Markowski, N. V., Pan, V. M., Schestlivyi, G. G., Flis, V. S., Shevchenko, O. A., Applications prospects of high power cryotrons in electrical machine systems for excitation of cryoturbogenerators, Superconductivity in Technology, Proceedings of the 2n All Union Conference on Technical Applications of Superconductivity, Leningrad, Sept. 26–28, 1983, p. 86.Google Scholar
  3. 3.
    ten Kate, H. H. J., Superconducting rectifiers. Thesis, University of Twente, April 1984.Google Scholar
  4. 4.
    Sikkenga, D., ten Kate, H. H. J., A full scale superconducting rectifier for powering a MRI-magnet, IEEE Trans, on Magn. 1989, Vol. MAG-25, 1771.CrossRefGoogle Scholar
  5. 5.
    Mulder, G. B. J., Increasing the operation frequency of superconducting rectifiers. Thesis, University of Twente, March 1988.Google Scholar
  6. 6.
    Hlásnik, I., Prospects of multifilamentary superconductor AC 50 Hz applications, J.Phys., 1984, 45, CI-459.CrossRefGoogle Scholar
  7. 7.
    Gray, K. E., Kampwirth, R. T., Design for a repetitive superconducting opening switch, Cryogenics 1984, 24, 21.Google Scholar
  8. 8.
    Wilson, M. N., Superconducting Magnets. Clarendon Press, Oxford, 1983.Google Scholar
  9. 9.
    Schmidt, C., App.Phys.Lett., 1978, 32, 827.CrossRefGoogle Scholar
  10. 10.
    Keilin, V. E., Klimenko, E. Yu., Kremlev, M. S., Samoilov, N. B., Stability criteria for currents in combined conductors,Proc. of the International Conference Les Champs Magnetiques Intenses, C.N.R.S. Paris, 1967, p. 231.Google Scholar
  11. 11.
    Dresner, L., Analytic solution for the propagation velocity in superconducting composites, IEEE Trans, on Magn. 1979, Vol, MAG-15. 328.CrossRefGoogle Scholar
  12. 12.
    Gurievich, A., Mints, R., Rakhmanov, A., -Physics of the composite superconductors. Moscow, Nauka 1987, in RussianGoogle Scholar

Copyright information

© The Institute of Electrical Engineers of Japan 1990

Authors and Affiliations

  • I. Hlásnik
    • 1
  • J. Kokavec
    • 1
  • N. V. Markovsky
    • 2
  • O. A. Shevchenko
    • 2
  1. 1.Electro-Physical Research Center, Slovak Academy of SciencesBasic Laboratory for Technical Applications of SuperconductivityBratislavaCzech Republic
  2. 2.Institute of Electrodynamics, Academy of SciencesUkrainian SSRKiyev 57USSR

Personalised recommendations