World’s Achievements in the Development of Superconducting Materials at Liquid Helium Temperature

  • K. Inoue


Ductile Nb-Ti superconducting alloy is practically used for generating relatively low magnetic fields. On the other hand, brittle Nb3Sn and V3Ga superconducting compounds are practically used in high fields. Remarkable improvements have been achieved on the critical current densities, Jo, and the a.c. properties of the Nb-Ti multifilamentary wire. Nb-tube processed (Nb,Ti)3Sn multifilamentary conductor shows the best high-field Jo among the multifilamentary superconductors, although a similar high Jo is obtained for improved surface-diffusion V3Ga tape at 17–20 T and 4.2 K. A Nb3Al ultra-fine multifilamentary conductor developed recently is worth noticing as a promising candidate of the new practical superconductors.


Critical Current Density High Critical Current Density Twist Pitch Critical Current Measurement Metallic Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsumoto, K. and Tanaka, Y., High critical current density in multi- filamentary Nb-Ti superconducting wires, to be published in Proc. 6th US-Japan Workshop on High Field Super conductors (1989, Boulder, Colorado);Google Scholar
  2. 2.
    Hong, S., Geschwindner, D., Mantone, A., Marencik, W., Zarek, S., and Zhou, R., High current density of Nb-Ti composite. IEEE Trans, on Magn., 1989, 25, 1934–1936;CrossRefGoogle Scholar
  3. 3.
    Kanithi, H., Expectations and limitations of Jo in practical Nb-Ti conductors. Adv. Cryo. Engn. Mater., 1988, 34, 951–958.Google Scholar
  4. 4.
    Shiraki, H., Nakayama, S., Tanaka, M., Murase, S., Aoki, N., Ichihara, M., Watanabe, K., Noto, K., and Muto, Y., High-field superconducting properties of Ti doped NbsSn conductor by the Nb tube method, to be published in Proc. MRS Int. Meet. Adv. Mater., (1988, Tokyo).Google Scholar
  5. 5.
    Tachikawa, K., Takeuchi, K., Iijima, Y., Inoue, K. and Togano, K., High field superconducting properties of V3Ga tapes. Adv. Cryo. Engn. Mater., 1988, 34, 585–592.Google Scholar
  6. 6.
    Dubot, P., Fevrier, A., Renard, J.C., Taavergnier, J.P., Goyer, J., and Ky, G.H., Nb-Ti wires ultra-fine filaments for 50–60 Hz use: influence of the filament diameter upon losses. IEEE Trans. Magn., 1985, HAG-21 177–180.CrossRefGoogle Scholar
  7. 7.
    Takeuchi, T., Iijima, Y., Kosuge, M., Kuroda, T., Yuyama, M. and Inoue, K. Effects of additive elements on continuous ultra-fine Nb3Al MF conductors. IEEE Trans. Magn., 1989, 25.Google Scholar
  8. 8.
    Clapp, M.T. and Shi, D. New processing technique for forming flexible A15 superconducting tapes with extremely high critical current densities and magnetic fields. Appl. Phys. Lett., 1986, 49, 1305–1307.CrossRefGoogle Scholar
  9. 9.
    Kubo, Y., Yoshizaki, K., Fujiwara, F., Noto, K. and Watanabe, K. Small coil tests of Chevrel-phase PbMo6S8 wires. to be published in Proc. MRS Int. Meet. Adv. Mater., (1988, Tokyo).Google Scholar
  10. 10.
    Hlasnik, I. Progress and problems in superconducting composites for ac applications. Proc. Int. Symp. Flux Pinning & Electromagnetic Properties in Superconductors., (Fukuoka, 1985) Matsukuma Press Co, p.247–253.Google Scholar
  11. 11.
    Shimizu, E. and Ito, D. Development of 50 kVA superconducting coil with Nb-Ti ultra-fine multifilamentary superconductor. Cryogenic Engineering (in Japanese), 1988, 23 192–204.Google Scholar
  12. 12.
    Tachikawa, K., Itoh, K., Wada, H., Gould, D., Jones, H., Walter, C.R., Goodrich, L.F., Ekin, J.W. and Bray, L.S. VAMAS intercomparison of critical current measurement in Nb3Sn wires. IEEE Trans. Magn. 1989, 25, 2368–2374.CrossRefGoogle Scholar
  13. 13.
    Smathers, D., O′Larey, P., Siddall, M., and McDonald, W. Status of the superconductor development program at Teledyne Wah Chang Albany. Adv. Cryo. Engn. Mater., 1988, 34, 515–522.Google Scholar
  14. 14.
    Hazelton, D.W., and Ozeryansky, G.M. Development of internal tin Nb3Sn conductor for high field magnet use. Adv. Cryo. Engn. Mater., 1988, 34, 499–506.Google Scholar
  15. 15.
    Togano, K., Takeuchi, T. and Tachikawa K. A15 Nb3(Al,Ge) superconductor prepared by transformation from liquid quenched body-centered cubic phase. Appl. Phys. Lett. 1982, 41, 199–201.CrossRefGoogle Scholar
  16. 16.
    Kumakura, H., Togano, K., Iijima, Y. and Tachikawa, K. Critical current measurement and coil tests for Nb3Al superconducting tapes fabricated by continuous laser and electron beam irradiation. Adv. Cryo. Engn. Mater., 1988, 34, 469–475.Google Scholar
  17. 17.
    Thieme, C.L.H., Pourrahimi, S. and Foner, S. Nb3Al wire produced by powder metallurgy and rapid quenching from high temperatures. IEEE Trans. Magn. 1989, 25, 1992–1995.CrossRefGoogle Scholar
  18. 18.
    Bruzzese, R., Sacchetti, N., Spadoni, M., Barani, G., Donati, G. and Ceresara, S. Improved critical current densities in Nb3Al based conductors. IEEE Trans. Magn., 1987, MAG-23 653–656.CrossRefGoogle Scholar
  19. 19.
    Kuroda, T., Wada, H., Iijima, Y. and Inoue K. Strain effect on superconducting properties in Nb3Al multifilamentary wires. J. Appl. Phys., 1989, 65, 4445.CrossRefGoogle Scholar

Copyright information

© The Institute of Electrical Engineers of Japan 1990

Authors and Affiliations

  • K. Inoue
    • 1
  1. 1.National Research Institute for MetalsTsukuba-shi, Ibaraki 305Japan

Personalised recommendations