Advertisement

Thermo-Electromagnetic Stability of Ultrafine Multifilamentary Superconducting Cables for Industrial Frequency Use

  • A. Guéraud
  • J. P. Tavergnier
  • A. Février
  • Y. Laumond
  • A. Lacaze
  • B. Dalle
  • A. Ansart

Abstract

The development from 1983 onwards of Nb-Ti ultrafine multifilamentary wires for 50—60 Hz applications has opened up many interesting perspectives in electrotechnology. The AC losses have been greatly reduced due to decreasing the filament diameter to values of 0.1 to 0.2 µm and by using a highly resistive CuNi matrix with a 30% nickel content. The low thermal conductivity and specific heat of this CuNi matrix and the very high critical current densities induce a very acute problem of thermoelectromagnetic stability. As the electromagnetic diffusivity is much higher than the thermal diffusivity, the stability is governed by an adiabatic criterion. The last experiments about various coils and different assembly configurations of industrial cables give us a large panel of results which permit us to check the validity of the theoretical calculations.

Keywords

Critical Current Density Saturated Layer High Critical Current Density Fault Current Limiter Critical Transport Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Dubots, A. Février, J.C. Renard, J.C. Goyer and Hoang Gi Ky - Behaviour of multifilaments under A.C. magnetic fields. Journal de Physique, sup. 1 (1984) pp. 467–470.Google Scholar
  2. [2]
    J.R. Cave, A. Février, T. Verhaege, A. Lacaze, Y. Laumond - Reduction of AC losses in ultra-fine multifilamentary NbTi wires. Applied Superconductivity Conference. San Francisco (1988).Google Scholar
  3. [3]
    P. Dubots, A. Février and Hoang Gia Ky -Specific properties of NbTi ultra-fine filaments wires. International Symposium on flux pinning and electromagnetic properties in superconductors (1985). Fukuoka, Japan.Google Scholar
  4. [4]
    A. Février, A. Guéraud, J.P. Tavergnier Thermo-electromagnetic stability of ultra-fine multifilamentary superconducting wires for 50–60 Hz uses. Applied Superconductivy Conference, San Francisco (1988).Google Scholar
  5. [5]
    A. Février, T. Verhaege, J.P. Tavergnier, Y. Laumond, M. Bekhaled, M. Collet, V.D. Pham - 25 kV superconducting fault current limiter. This conference.Google Scholar
  6. [6]
    A. Février - Losses in a twisted multifilamentary superconducting composite submitted to any space and time variations of the electromagnetic surrounding. Cryogenics 23, p. 185 (1983).CrossRefGoogle Scholar
  7. [7]
    J.L. Duchateau - Les instabilités magnétiques dans les composites supraconducteurs multifilamentaires. Thése Orsay (1975).Google Scholar
  8. [8]
    J.Y. Georges, A. Février, Y. Laumond, A. Lacaze and P. Bonnet. - Performances of industrial superconducting wires for 250–60 Hz applications. This conference.Google Scholar

Copyright information

© The Institute of Electrical Engineers of Japan 1990

Authors and Affiliations

  • A. Guéraud
    • 1
  • J. P. Tavergnier
    • 1
  • A. Février
    • 1
  • Y. Laumond
    • 2
  • A. Lacaze
    • 2
  • B. Dalle
    • 3
  • A. Ansart
    • 3
  1. 1.Laboratoires de MarcoussisCentre de Recherches de la CGEMarcoussisFrance
  2. 2.GEC Alsthom — DEABelfortFrance
  3. 3.EDF — DERClamartFrance

Personalised recommendations