Immobilized Biocatalyst Technology

  • Lawson W. Powell

Abstract

It would be impossible within a review of this size to cover in depth all of the numerous facets of immobilized biocatalyst technology. Indeed, whole books are devoted to specific topics such as the analytical uses of immobilized enzymes (Guilbault, 1984) or the principles and applications of immobilized cells (Tampion & Tampion, 1987). It is the intention of this review to try and indicate the breadth of topics within the umbrella of immobilized biocatalyst technology and to provide references allowing anyone interested to research a particular area further.

Keywords

Immobilize Enzyme Reversed Micelle Calcium Alginate Membrane Reactor Microbial Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowicz, D. A. & Keese, C. R. (1989). Biotechnology and Bioengineering, 33, 149.Google Scholar
  2. Ahern, T. J., Katoh, S. & Sada, E. (1983). Biotechnology and Bioengineering, 25, 881.Google Scholar
  3. Alberti, B. N. & Klibanov, A. M. (1982). Enzyme and Microbial Technology, 4, 47.Google Scholar
  4. Ampon, K. & Means, G. E. (1988). Biotechnology and Bioengineering, 32, 689.Google Scholar
  5. Anderrson, E., Mattiasson, B. & Hahn-Hägerdal, B. (1984). Enzyme and Microbial Technology, 6, 301.Google Scholar
  6. Archambault, J., Volesky, B. & Kurz, W. G. W. (1989). Biotechnology and Bioengineering, 33, 293.Google Scholar
  7. Baker, C. J. S. (1988). Laboratory Practice, 37(3), 13.Google Scholar
  8. Belfort, G. (1989). Biotechnology and Bioengineering, 33, 1047.Google Scholar
  9. Berke, W., Schüz, H.-J., Wandrey, C., Morr, M., Denda, G. & Kula, M.-R. (1988). Biotechnology and Bioengineering, 32, 130.Google Scholar
  10. Bermúdez, J. J., Jimeno, A., Canovas-Diaz, M., Manjon, A. & Iborra, J. L. (1988). Process Biochemistry, 23, 178.Google Scholar
  11. Birnbaum, S., Buelow, L., Hardy, K. & Mosbach, K. (1988). Enzyme and Microbial Technology, 10, 601.Google Scholar
  12. Boag, A. H. & Sefton, M. V. (1987). Biotechnology and Bioengineering, 30, 954.Google Scholar
  13. Bourdillon, C., Lortie, R. & Laval, J. M. (1988). Biotechnology and Bioengineering, 31, 553.Google Scholar
  14. Braun, J., Le Chanu, P. & Le Goffic, F. (1989). Biotechnology and Bioengineering, 33, 242.Google Scholar
  15. Brodelius, P. (1983). In Immobilized Cells and Organelles Vol. 1, ed. B. Mattiasson. CRC Press, Boca Raton, Florida, p. 27.Google Scholar
  16. Brodelius, P. (1985). In Immobilized Cells and Enzymes a Practical Approach, ed. J. Woodward. IRL Press Ltd, Oxford and Washington, DC., p. 127.Google Scholar
  17. Brodelius, P. (1988). In Bioreactor Immobilized Enzymes and Cells. Fundamentals and Applications, ed. M. Moo-Young. Elsevier Applied Science, London and New York, p. 167.Google Scholar
  18. Brodelius, P. & Vandamme, E. J. (1987). In Biotechnology, Vol. 7a, ed. J. F. Kennedy. VCH Verlagsgesellschaft mbH, D-6940, Weinheim, FRG, p. 405.Google Scholar
  19. Bucke, C. (1983). Philosophical Transactions of the Royal Society of London B300, 369.Google Scholar
  20. Camp, C. E. & Sofer, S. S. (1987). Enzyme and Microbial Technology, 9, 685.Google Scholar
  21. Carrea, G., Riva, S., Bovara, R. & Pasta, P. (1988). Enzyme and Microbial Technology, 10, 333.Google Scholar
  22. Cassells, J. M. & Halling, P. J. (1989). Biotechnology and Bioengineering, 33, 1489.Google Scholar
  23. Champagne, C. P., Girard, F. & Marin, N. (1988). Biotechnology Letters, 10, 463.Google Scholar
  24. Champagne, C. P., Baillargeon-Côte, C. & Goulet, J. (1989). Journal of Applied Bacteriology, 66, 175.Google Scholar
  25. Chang, T. M. S. (1976). In Methods in Enzymology, Vol. 44, ed. K. Mosbach. Academic Press, New York, San Francisco and London, p. 201.Google Scholar
  26. Chang, T. M. S. (1977). Biomedical Applications of Immobilized Enzymes and Proteins, Vols 1 & 2. Plenum Press, New York and London.Google Scholar
  27. Cheetham, P. S. J. (1987). Enzyme and Microbial Technology, 9, 194.Google Scholar
  28. Cheetham, P. S. J., Blunt, K. W. & Bucke, C. (1979). Biotechnology and Bioengineering, 21, 2155.Google Scholar
  29. Chenault, H. K. & Whitesides, G. M. (1987). Applied Biochemistry and Biotechnology, 14, 147.Google Scholar
  30. Chibata, I. (1978). Immobilized Enzymes. John Wiley and Sons, New York, London, Sydney and Toronto.Google Scholar
  31. Chibata, I., Tosa, T., Mori, T., Watanabe, T. & Sakata, N. (1986). Enzyme and Microbial Technology, 8, 130.Google Scholar
  32. Cho, M. H. & Wang, S. S. (1988). Biotechnology Letters, 10, 855.Google Scholar
  33. Cooper, A. C. (1984). Chemistry in Britain, 20, 815.Google Scholar
  34. Crumbliss, A. L., McLachian, K. L., O’Daly, J. P. & Henkins, R. W. (1988). Biotechnology and Bioengineering, 31, 796.Google Scholar
  35. Daka, J. N., Laidler, K. J., Sipehia, R. & Chang, T. M. S. (1988). Biotechnology and Bioengineering, 32, 213.Google Scholar
  36. Dalili, M. & Chau, P. (1988). Biotechnology Letters, 10, 331.Google Scholar
  37. Deshpande, M. V., Balkrishnan, H., Ranjekar, P. K. & Shankar, V. (1987). Biotechnology Letters, 9, 49.Google Scholar
  38. De Taxis du Pöet, P., Dhulster, P., Barbotin, J.-N. & Thomas, D. (1986). Journal of Bacteriology, 165, 871.Google Scholar
  39. Dinelli, D., Marconi, W. & Morisi, F. (1976). In Methods in Enzymology, Vol. 44, ed. K. Mosbach. Academic Press, New York, San Francisco and London, p. 227.Google Scholar
  40. Dixon, M. & Webb, E. C. (1979). Enzymes, 3rd edn. Longman Group Ltd, London, p. 468.Google Scholar
  41. Domínguez, E., Nilsson, M. & Hahn-Hägerdal, B. (1988). Enzyme and Microbial Technology, 10, 606.Google Scholar
  42. Duff, S. J. B. (1988). Biotechnology and Bioengineering, 31, 345.Google Scholar
  43. Estell, D. A., Graycar, T. P. & Wells, J. A. (1985). Journal of Biological Chemistry, 260, 6518.Google Scholar
  44. Evans, T. L. & Miller, R. A. (1988). Biotechniques, 6, 762.Google Scholar
  45. Fadda, M. B., Dessi, M. R., Rinaldi, A. & Satta, G. (1989). Biotechnology and Bioengineering, 33, 777.Google Scholar
  46. Fadnavis, N. W. & Luisi, P. L. (1989). Biotechnology and Bioengineering, 33, 1277.Google Scholar
  47. Fersht, A. R. (1985). Enzyme Structure and Mechanism, 2nd edn. W. H. Freeman and Company, New York, p. 369.Google Scholar
  48. Findlay, C. J., Parking, K. L. & Yada, R. Y. (1986). Biotechnology Letters, 8, 649.Google Scholar
  49. Franssen, M. C. R., Weijnen, J. G. J., Vincken, J. P., Laane, C. & van der Pias, H. C. (1988). Biocatalysis, 1, 205.Google Scholar
  50. Freeman, A. (1984). Annals of the New York Academy of Sciences, 434, 418.Google Scholar
  51. Fujimura, M., Moro, T. & Tosa, T. (1987). Biotechnology and Bioengineering, 29, 747.Google Scholar
  52. Fukushima, Y., Okamura, K., Imai, K. & Motai, H. (1988). Biotechnology and Bioengineering, 32, 584.Google Scholar
  53. Fusek, M., Turkova, J., Stovickova, J. & Franek, F. (1988). Biotechnology Letters, 10, 85.Google Scholar
  54. Gianfreda, L., Pirozzi, D. & Greco, G. Jr (1989). Biotechnology and Bioengineering, 33, 1067.Google Scholar
  55. Gijzen, H. J., Schoenmakers, T. J. M., Caerteling, C. G. M. & Vogels, G. D. (1988). Biotechnology Letters, 10, 61.Google Scholar
  56. Gin, H., Dupuy, B., Baquey, C., Ducassou, D. & Aubertin, J. (1987). Journal of Microencapsulation, 4, 239.Google Scholar
  57. Godbole, S. S., Kaul, R., D’Souza, S. F. & Nadkarni, G. B. (1983). Biotechnology and Bioengineering, 25, 217.Google Scholar
  58. Goldstein, L. & Manecke, G. (1976). In Applied Biochemistry and Bioengineering, Vol. 1, eds L. Wingard, E. Katchalski-Katzir & L. Goldstein. Academic Press, New York, San Francisco and London, p. 23.Google Scholar
  59. Gorris, L. G. M., van Deursen, J. M. A., van der Drift, C. & Vogels, G. D. (1989). Biotechnology and Bioengineering, 33, 687.Google Scholar
  60. Gourdon, R., Cornel, C., Vermande, P. & Véron, J. (1989). Biotechnology and Bioengineering, 33, 1167.Google Scholar
  61. Creco, G. Jr, Veronese, F., Largajolli, R. & Gianfreda, L. (1983). European Journal of Applied Microbiology and Biotechnology, 18, 333.Google Scholar
  62. Gregoriadis, G. (1976). In Methods in Enzymology, Vol. 44, ed. K. Mosbach. Academic Press, New York, San Francisco and London, p. 218.Google Scholar
  63. Gu, K. F. & Chang, T. M. S. (1988). In Bioreactor Immobilized Enzymes and Cells. Fundamentals and Applications, ed. M. Moo-Young. Elsevier Applied Science, London and New York, p. 59.Google Scholar
  64. Guilbault G. G. (1984). Analytical Uses of Immobilized Enzymes. Marcel Dekker Inc., New York and Basel.Google Scholar
  65. Guilbault, G. G. (1989). Biotechnology, 7, 349.Google Scholar
  66. Guilbault, G. G. & de Olivera Neto, G. (1985). In Immobilized Cells and Enzymes a Practical Approach, ed. J. Woodward. IRL Press Ltd, Oxford and Washington, DC., p. 55.Google Scholar
  67. Hallenbeck, P. C. (1983). Enzyme and Microbial Technology, 5, 171.Google Scholar
  68. Hailing, P. J. (1987). Biotechnology Advances, 5, 47.Google Scholar
  69. Hartmeier, W. (1988). Immobilized Biocatalysts—an Introduction. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  70. Hirtenstein, M. & Clark, J. (1983). In Immobilized Cells and Organelles, Vol. 1, ed. B. Mattiasson. CRC Press, Boca Raton, Florida, p. 58.Google Scholar
  71. Hopkinson, J. (1983). In Immobilized Cells and Organelles, Vol. 1, ed. B. Mattiasson. CRC Press, Boca Raton, Florida, p. 89.Google Scholar
  72. Hustedt, H. (1986). Biotechnology Letters, 8, 791.Google Scholar
  73. Hutchinson, D. W. & Collier, R. (1987). Biotechnology and Bioengineering, 29, 793.Google Scholar
  74. Inada, Y., Takahashi, K., Yoshimoto, T., Ajima, A., Matsushima, A. & Saito, Y. (1986). Trends in Biotechnology, 4, 190.Google Scholar
  75. International Union of Biochemistry (1979). Enzyme Nomenclature. Academic Press Inc., New York.Google Scholar
  76. Jain, P. & Wilkins, E. S. (1987). Biotechnology and Bioengineering, 30, 1057.Google Scholar
  77. Jin, F. & Toda, K. (1988). Biotechnology Letters, 10, 221.Google Scholar
  78. Joubert, W. A. & Britz, T. J. (1988). Biotechnology Letters, 10, 49.Google Scholar
  79. Kargi, F. (1988). Biotechnology Letters, 10, 181.Google Scholar
  80. Kargi, F. & Freidel, I. (1988). Biotechnology Letters, 10, 409.Google Scholar
  81. Karube, I. (1984). In Biotechnology and Genetic Engineering Reviews, Vol, 2, ed. G. E. Russell. Intercept Ltd, Newcastle-upon-Tyne, p. 313.Google Scholar
  82. Kawamoto, T., Sonomoto, K. & Tanaka, A. (1987). Biocatalysis, 1, 137.Google Scholar
  83. Kennedy, J. F. & Cabral, J. M. S. (1985). In Immobilized Cells and Enzymes a Practical Approach, ed. J. Woodward. IRL Press Ltd, Oxford and Washington, DC., p. 19.Google Scholar
  84. Kennedy, J. F. & Cabral, J. M. S. (1987). In Biotechnology, Vol. 7, ed. J. F. Kennedy. VCH Verlagsgesellschaft mbH, D-6940 Weinheim, FRG, p. 347.Google Scholar
  85. Khmelnitsky, Y. L., Levashov, A. V., Klyachko, N. L. & Martinek, K. (1988). Enzyme and Microbial Technology, 10, 710.Google Scholar
  86. King, G. A., Dauglis, A. J., Faulkner, P., Bayly, D. & Goosen, M. F. A. (1988). Biotechnology Letters, 10, 683.Google Scholar
  87. Klein, M. D. & Lange, R. (1986). Trends in Biotechnology, 4, 179.Google Scholar
  88. Klibanov, A. M. (1989). Trends in Biochemical Sciences, 14, 141.Google Scholar
  89. Kobayashi, Y., Matsuo, R., Ohya, T. & Yokoi, N. (1986). Biotechnology and Bioengineering, 30, 451.Google Scholar
  90. Kobos, R. K., Eveleigh, J. W. & Arentzen, R. (1989). Trends in Biotechnology, 7(4), 101.Google Scholar
  91. Kokufuta, E., Shimizu, N., Tanaka, H. & Nakamura, I. (1988a). Biotechnology and Bioengineering, 32, 756.Google Scholar
  92. Kokufuta, E., Yamaya, Y., Shimada, A. & Nakamura, I. (19886). Biotechnology Letters, 10, 301.Google Scholar
  93. Kolot, F. B. (1980). Process Biochemistry, 15(7), 2.Google Scholar
  94. Kolot, F. B. (1981a). Process Biochemistry, 16(5), 2.Google Scholar
  95. Kolot, F. B. (1981a). Process Biochemistry, 16(6), 30.Google Scholar
  96. Kutney, J. P., Berset, J. D., Heewitt, G. M. & Singh, M. M. (1988). Applied and Environmental Microbiology, 54, 1015.Google Scholar
  97. Lagerlöf, E., Nathorst-Westfelt, L., Ekström, B. & Sjoberg, B. (1976). In Methods in Enzymology, Vol. 44, ed. K. Mosbach. Academic Press, New York, San Francisco and London, p. 759.Google Scholar
  98. Langer, R. S., Hamilton, B. K., Gardner, C. R., Archer, M. C. & Colton, C. K. (1976). AICHE Journal, 22, 1079.Google Scholar
  99. Larsson, M., Arasaratnam, V. & Mattiasson, B. (1989). Biotechnology and Bioengineering, 33, 758.Google Scholar
  100. Lowe, C. R. (1981). In Topics in Enzyme and Fermentation Biotechnology, Vol. 5, ed. A. Wiseman. Ellis Horwood Ltd, Chichester, p. 13.Google Scholar
  101. Lowe, C. R. (1983). Philosophical Transactions of the Royal Society of London, B300, 335.Google Scholar
  102. Lowe, C. R. (1984). Trends in Biotechnology, 2, 59.Google Scholar
  103. Lozano, P., Manjón, A., Romojaro, F. & Iborra, J. L. (1988). Process Biochemistry, 23, 75.Google Scholar
  104. Macrae, A. R. (1983). Journal of the American Oil Chemists Society, 60, 291.Google Scholar
  105. Makino, K., Maruo, S.-I., Morita, Y. & Takeuchi, T. (1988). Biotechnology and Bioengineering, 31, 617.Google Scholar
  106. Malaníková, M., Malaník, V., Pšenička, I. & Marek, M. (1988). Biotechnology Letters, 10, 579.Google Scholar
  107. Manjón, A., Llorca, F., Bonete, M. J., Bastida, J. & Iborra, J. L. (1985). Process Biochemistry, 20, 17.Google Scholar
  108. Mansfeld, J. & Schellenberger, A. (1987). Biotechnology and Bioengineering, 29, 72.Google Scholar
  109. Martinek, K., Berezin, I. V., Khmelnitski, Y. L., Klyachko, N. L. & Levashov, A. V. (1987). Biocatalysis, 1, 9.Google Scholar
  110. Martinsen, A., Skjåk-Braek, G. & Smidsrød, O. (1989). Biotechnology and Bioengineering, 33, 79.Google Scholar
  111. Matson, S. L. & Quinn, J. A. (1986). Annals of the New York Academy of Sciences, 469, 152.Google Scholar
  112. Maugh, T. H. II (1984). Science, 223, 474.Google Scholar
  113. McCann, J. (1987). Laboratory Practice, 36(5), 17.Google Scholar
  114. Melik-Nubarov, N. S., Mozhaev, V. V., Siksnis, S. & Martinek, K. (1987). Biotechnology Letters 9, 725.Google Scholar
  115. Messing, R. A. (1975). Journal of Non-crystalline Solids, 19, 277.Google Scholar
  116. Messing, R. A. (1980). Annual Reports on Fermentation Processes, 4, 105.Google Scholar
  117. Messing, R. A. (1982). Biotechnology and Bioengineering, 24, 1115.Google Scholar
  118. Mizrahi, A. (1986). Process Biochemistry, 21, 108.Google Scholar
  119. Mozhaev, V. V., Siksnis, V. A., Melik-Nubarov, N. S., Galkantaite, N. Z., Denis, G. J., Butkus, E. P., Zaslavsky, B. Y., Mestechkina, N. M. & Martinek, K. (1988). European Journal of Biochemistry, 173, 147.Google Scholar
  120. Mulchandani, A., Luong, J. H. T. & Le Duy, A. (1989). Biotechnology and Bioengineering, 33, 306.Google Scholar
  121. Nelson, J. M. & Griffin, E. G. (1916). Journal of the American Chemical Society, 38, 1109.Google Scholar
  122. O’Fagain, C., Sheehan, H., O’Kennedy, R. & Kilty, C. (1988). Process Biochemistry, 23, 166.Google Scholar
  123. Ongcharit, C., Dauben, P. & Sublette, K. C. (1989). Biotechnology and Bioengineering, 33, 1077.Google Scholar
  124. Opara, C. C. & Mann, J. (1987). Biotechnology and Bioengineering, 31, 470.Google Scholar
  125. Oriel, P. (1988). Biotechnology Letters, 10, 113.Google Scholar
  126. Pederson, H., Furier, L., Venkatsubramanian, K., Prenosil, J. & Stuker, E. (1985). Biotechnology and Bioengineering, 27, 961.Google Scholar
  127. Poncelet, B., DeSmet, D., Poncelet, D. & Neufeld, R. J. (1989). Enzyme and Microbial Technology, 11, 29.Google Scholar
  128. Powell, L. W. (1984). In Biotechnology and Genetic Engineering Reviews, Vol. 2, ed. G. R. Russell. Intercept Ltd, Newcastle-upon-Tyne, p. 409.Google Scholar
  129. Pu, H. T., Yang, R. Y. K. & Saus, F. L. (1989). Biotechnology Letters, 11, 83.Google Scholar
  130. Rao, K. K. & Hall, D. O. (1984). Trends in Biotechnology, 2, 124.Google Scholar
  131. Robinson, P. K., Mak, A. L. & Trevan, M. D. (1986). Process Biochemistry, 21, 122.Google Scholar
  132. Rochefort, W. E., Rehg, T. & Chau, P. C. (1986). Biotechnology Letters, 8, 115.Google Scholar
  133. Rosazza, J. P. (1982). Microbial Transformations of Bioactive Compounds, Vols 1 & 2. CRC Press, Boca Raton, Florida.Google Scholar
  134. Rosevear, A. (1975). British Patent 1,514,707.Google Scholar
  135. Rosevear, A. (1984). Journal of Chemical Technology and Biotechnology, 34B, 127.Google Scholar
  136. Rosevear, A. & Lambe, C. A. (1985). Advances in Biochemical Engineering, 31, 37.Google Scholar
  137. Rosevear, A., Kennedy, J. F. & Cabral, J. M. S. (1987). Immobilized Enzymes and Cells. Adam Hilger, Bristol and Philadelphia.Google Scholar
  138. Royer, G. P., Ikeda, S. & Aso, K. (1977). FEBS Letters, 80, 89.Google Scholar
  139. Rucka, M. & Turkiewicz, B. (1989). Biotechnology Letters, 11, 167.Google Scholar
  140. Sada, E., Katoh, S., Terashima, M. & Tsukiyama, K.-I. (1988). Biotechnology and Bioengineering, 32, 826.Google Scholar
  141. Schmidt, E., Bossow, B., Wichmann, R. & Wandrey, C. (1986). Kemija u Industriji, 35, 71.Google Scholar
  142. Semenov, A. N., Khelmnitsky, Y. L., Berezin, I. V. & Martinek, K. (1987). Biocatalysis, 1, 3.Google Scholar
  143. Shama, G. (1988). Process Biochemistry, 23, 138.Google Scholar
  144. Silberger, E. & Freeman, A. (1987). Biotechnology and Bioengineering, 30, 675.Google Scholar
  145. Simionescu, C., Popa, M. I. & Dumitriu, S. (1987). Biotechnology and Bioengineering, 29, 361.Google Scholar
  146. Smiley, A. L., Hu, W.-S. & Wang, D. I. C. (1989). Biotechnology and Bioengineering, 33, 1182.Google Scholar
  147. Smith, M. (1985). Annual Review of Genetics, 19, 423.Google Scholar
  148. Smith, R. A. G. (1976). Nature, 262, 519.Google Scholar
  149. Soda, K. & Yonaha, K. (1987). In Biotechnology, Vol. 7a, ed. J. F. Kennedy. VCH Verlagsgesellschaft mbH, D-6940, Weinheim, FRG p. 605.Google Scholar
  150. Sofer, S. S. (1979). Enzyme and Microbial Technology, 1, 3.Google Scholar
  151. Sørensen, J. E. & Emborg, C. (1989). Enzyme and Microbial Technology, 11, 26.Google Scholar
  152. Steenson, L. R., Klaenhammer, T. R. & Swaisgood, H. E. (1987). Journal of Dairy Science, 70, 1121.Google Scholar
  153. Synowiecki, J., Sikorska-Siondalska, A. & El-Bedaway, A. El-Fath (1987). Biotechnology and Bioengineering, 29, 352.Google Scholar
  154. Tai, D.-F., Fu, S.-L., Chuang, S.-F. & Tsai, H. (1989). Biotechnology Letters, 11, 173.Google Scholar
  155. Takeuchi, T. & Makino, K. (1987). Biotechnology and Bioengineering, 29, 160.Google Scholar
  156. Tampion, J. & Tampion, M. D. (1987). Immobilized Cells: Principles and Applications. Cambridge University Press, Cambridge.Google Scholar
  157. Tanaka, A. & Fukui, S. (1983). In Immobilized Cells and Organelles, Vol. 1, ed. B. Mattiasson. CRC Press, Boca Raton, Florida, p. 102.Google Scholar
  158. Thomasset, B., Thomas, D. & Lortie, R. (1988). Biotechnology and Bioengineering, 32, 764.Google Scholar
  159. Thompson, L. A., Knowles, C. J., Linton, E. A. & Wyatt, J. M. (1988). Chemistry in Britain, 24, 900.Google Scholar
  160. Trevan, M. D. (1980). Immobilized Enzymes. An Introduction and Applications in Biotechnology. John Wiley & Sons, Chichester, New York, Brisbane and Toronto.Google Scholar
  161. Trevan, M. D. & Mak, A. L. (1988). Trends in Biotechnology, 6, 68.Google Scholar
  162. Tsezos, M., Noh, S. H. & Baird, M. H. I. (1988). Biotechnology and Bioengineering, 32, 545.Google Scholar
  163. Ugarova, N. N. & Lebedeva, O. V. (1987). Applied biochemistry and Biotechnology, 15, 35.Google Scholar
  164. Vaidya, S., Srivastasa, R. & Gupta, M. N. (1987). Biotechnology and Bioengineering, 29, 1040.Google Scholar
  165. Varani, J., Fligiel, S. E. G., Inman, D. R., Helmreich, D. L., Bendelow, M. J. & Hillegas, W. (1989). Biotechnology and Bioengineering, 33, 1235.Google Scholar
  166. Viera, F. B., Barragan, B. B. & Busto, B. L. (1988). Biotechnology and Bioengineering, 31, 711.Google Scholar
  167. Vorlop, K.-D. & Klein, J. (1981). Biotechnology Letters, 3, 9.Google Scholar
  168. Wandrey, C. & Wichmann, R. (1985). In Enzymes and Immobilized Cells in Biotechnology, Vol. 8, Biotechnology series 5, ed. A. I. Laskin. Benjamin/Cummings Publishing Company, Mendo Park, California, p. 177.Google Scholar
  169. Wandrey, C., Wichmann, R. & Jandel, A.-S. (1982). Enzyme Engineering, 6, 61.Google Scholar
  170. Whitesides, G. M. (1985). In Enzymes in Organic Synthesis, eds R. Porter & S. Clark. Pitman, London, p. 76.Google Scholar
  171. Wilkinson, A. J., Fersht, A. R., Blow, D. M., Carter, P. & Winter, G. (1984). Nature 307, 187.Google Scholar
  172. Wisecarver, K. D. & Fan, L.-S. (1989). Biotechnology and Bioengineering, 33, 1029.Google Scholar
  173. Woodward, J. (1985). In Immobilized Cells and Enzymes a Practical Approach, ed. J. Woodward. IRL Press Ltd, Oxford and Washington, DC., p. 3.Google Scholar
  174. Yamada, H. & Shimizu, S. (1988). Angewandte Chemie—International Edition in English, 27, 622.Google Scholar
  175. Yamane, T. (1987). Journal of the American Oil Chemists’ Society, 64, 1657.Google Scholar
  176. Yoshimoto, T., Takahishi, K., Nishimura, H., Ajima, A., Tamaura, Y. & Inada, Y. (1984). Biotechnology Letters, 6, 337.Google Scholar
  177. Zaborsky, O. R. (1973). Immobilized Enzymes. CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Lawson W. Powell
    • 1
  1. 1.Beecham PharmaceuticalsWorthing, West SussexUK

Personalised recommendations