Advertisement

Cellulose Degradation by Fungi

  • Michael P. Coughlan

Abstract

Cellulose is the most abundant organic macromolecule on earth. It has been estimated that total biomass (fossil fuels excepted) amounts to about 1·8 × 1012 tonnes, 1 × 1011 tonnes being replenished each year by photosynthesis (Bassham, 1975; Stephens & Heichel, 1975). Since 40% of this biomass consists of cellulose (Brown, 1983), one may calculate that 7 × 1011 tonnes of this material exist, mainly in higher plants, and that annual productivity is about 4 × 1010 tonnes. The magnitude of these figures can be appreciated by noting that the rate of cellulose synthesis is equivalent to 70 kg per person per day (Lützen et al., 1983) or to 50 000 barrels of oil per second in energy terms (Sienko & Plane, 1976). Indeed, current terrestrial biomass, at 640 billion tonnes of oil equivalent, is equal to total proven fossil fuel reserves (De Montelambert, 1983). But, unlike the latter it is constantly being renewed. Lignocellulosic wastes or residues of forest, agriculture, industrial or domestic origin, are generated in great quantities especially in the more developed countries. Many reports have suggested that much of the demand for fuels and chemical feedstocks, currently met by oil, could be met by appropriate exploitation of such wastes (Avgerinos & Wang, 1980; Chartier, 1981; Eveleigh, 1982; Brown, 1983; Grohman & Villet, 1983; Hall, 1983; Sheppard & Lipinsky, 1983; Sinskey, 1983; Soltes, 1983; Eveleigh, 1984; Lloyd, 1984).

Keywords

Bacterial Cellulose Crystalline Cellulose Glycosidic Linkage Cellulose Degradation Amorphous Cellulose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin, D. E. (1987). Animal Feed Science and Technology, 16, 273.Google Scholar
  2. Akin, D. E. & Barton, F. E. II. (1983). In Wood and Agricultural Residues. Research on Use for Feed, Fuels and Chemicals, ed. E. J. Sokes. Academic Press, New York, p. 33.Google Scholar
  3. Akin, D. E., Gordon, G. L. R. & Hogan, J. P. (1983). Applied and Environmental Microbiology, 46, 738.Google Scholar
  4. Alexopoulos, C. J. (1962). Introductory Mycology, 2nd. edn. Wiley, New York.Google Scholar
  5. Alluralde, J. L. & Ellenreider, G. (1984). Enzyme and Microbial Technology, 6, 467.Google Scholar
  6. Ander, P. & Eriksson, K.-E. (1978). Progress in Industrial Microbiology, 14, 1.Google Scholar
  7. Anon. (1981). Enzymatic Hydrolysis of Cellulose to Glucose. A Report on the Natick Programme. US Army Natick Research & Development Command, Natick, Mass., USA.Google Scholar
  8. Anon. (1982). Cellulose Enzymolysis. 1978-December 1982. (Citations from the Institute of Paper Chemistry Data Base). Available from NTIS no. PB82-855874.Google Scholar
  9. Atalla, R. H. (1983). In Wood and Agricultural Residues. Research on Use for Feed, Fuels and Chemicals, ed. E. J. Sokes. Academic Press, New York, p. 59.Google Scholar
  10. Atalla, R. H. (1984). In Structure, Function and Biosynthesis of Plant Cell Walls, eds W. M. Dugger & S. Bartnicki-Garcia. Waverly Press, Baltimore, MD, p. 381.Google Scholar
  11. Atalla, R. H. & VanderHart, D. L. (1984). Science, 223, 283.Google Scholar
  12. Aubert, J.-P., Béguin, P. & Millet, J. (eds) (1988). Biochemistry and Genetics of Cellulose Degradation. Academic Press, London.Google Scholar
  13. Aunstrup, K. (1978). Annual Reports of Fermentation Processes, 2, 125.Google Scholar
  14. Avgerinos, G. & Wang, D. I. C. (1980). Annual Reports of Fermentation Processes, 4, 165.Google Scholar
  15. Ayers, A. R., Ayers, S. B. & Eriksson, K.-E. (1978). European Journal of Biochemistry, 90, 171.Google Scholar
  16. Bassham, J. A. (1975). Biotechnology and Bioengineering Symposium, 5, 9.Google Scholar
  17. Bauchop, T. (1981). Agriculture and Environment, 6, 339.Google Scholar
  18. Bauchop, T. & Mountfort, D. O. (1981). Applied and Environmental Microbiology, 42, 1103.Google Scholar
  19. Béguin, P., Grépinet, O., Tailliez, P., Joliff, G., Girard, H., Millet, J. & Aubert, J.-P. (1987). Conversion of cellulose into ethanol by Clostridium thermocellum: Genetic engineering of cellulases and improvement of ethanol production. In Proc. Int. Conf. Biomass for Energy and Industry, ed. G. Grassi, B. Delmoa, J.-F. Molle & H. Zibetta, Elsevier Applied Science, London, p. 346.Google Scholar
  20. Béguin, P., Millet, J., Grépinet, O., Navarro, A., Juy, M., Amit, A., Poljak, R. & Aubert, J.-P. (1988). The cel (cellulose degradation) genes of Clostridium thermocellum. In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet, Academic Press, London p. 267.Google Scholar
  21. Beldman, G., Rombouts, F. M., Voragen, A. G J. & Pilnik, W. (1984). Enzyme and Microbial Technology, 6, 503.Google Scholar
  22. Beldman, G., Voragen, A. G. J., Rombouts, F. M., Searle-van Leeuwen, M. F. & Pilnik, W. (1987). Biotechnology and Bioengineering, 30, 251.Google Scholar
  23. Berghem, L. E. R. & Pettersson, L. G. (1973). European Journal of Biochemistry, 37, 21.Google Scholar
  24. Berghem, L. E. R., Pettersson, L. G. & Axiö-Frederiksson, U.-B. (1975). European Journal of Biochemistry, 53, 55.Google Scholar
  25. Bhat, K. M. & Wood, T. M. (1989). Biochemical Society Transactions, 17, 104.Google Scholar
  26. Bhikhabhai, R. & Pettersson, G. (1984a). Biochemical Journal, 222, 729.Google Scholar
  27. Bhikhabhai, R. & Pettersson, G. (1984b). FEBS Letters, 167, 301.Google Scholar
  28. Blackwell, J. (1982). In Cellulose and Other Natural Polymer Systems: Biosynthesis, Structure and Degradation, ed. R. M. Brown, Jr, Plenum Press, New York, p. 403.Google Scholar
  29. Blanchette, R. A. (1980a). Journal of Forestry Research, 78, 734.Google Scholar
  30. Blanchette, R. A. (1980b). Canadian Journal of Botany, 58, 1496.Google Scholar
  31. Blanchette, R. A. (1982). Canadian Journal of Forestry Research, 12, 304.Google Scholar
  32. Blanchette, R. A., Shaw, C. G. & Cohen, A. L. (1978). Scanning Electron Microscopy, 11, 61.Google Scholar
  33. Bock, K. & Sigurskjold, B. W. (1989). European Journal of Biochemistry, 178, 711.Google Scholar
  34. Brown, D. E. (1983). Philosophical Transactions of the Royal Society of London, B300, 305.Google Scholar
  35. Bruchmann, E.-E., Schach, H. & Graf, H. (1987). Biotechnology and Applied Biochemistry, 9, 146.Google Scholar
  36. Chanzy, H. & Henrissat, B. (1985). FEBS Letters, 184, 285.Google Scholar
  37. Chanzy, H., Dube, M., Marchessault, R. H. & Revol, J. F. (1979). Biopolymers, 18, 887.Google Scholar
  38. Chanzy, H., Henrissat, B., Vuong, R. & Schülein, M. (1983). FEBS Letters, 153, 113.Google Scholar
  39. Chanzy, H., Henrissat, B. & Vuong, R. (1984). FEBS Letters, 172, 193.Google Scholar
  40. Chartier, P. (1981). In Energy from Biomass, 1st EC Conference, eds W. Palz, P. Chartier & D. O. Hall. Elsevier Applied Science, London, p. 22.Google Scholar
  41. Chen, C. M., Gritzali, M. & Stafford, D. W. (1987). Biotechnology, 5, 274.Google Scholar
  42. Chu, S. C. & Jeffrey, G. A. (1968). Acta Crystallographica, B24, 830.Google Scholar
  43. Claeyssens, M. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 393.Google Scholar
  44. Claeyssens, M. & Tomme, P. (1989). In Enzyme Systems for Lignocellulose Degradation, ed. M. P. Coughlan. Elsevier Applied Science, London, p. 37.Google Scholar
  45. Clarke, A. J. (1987). Biochimica et Biophysica Acta, 912, 424.Google Scholar
  46. Clarke, A. J. & Yaguchi, M. (1985). European Journal of Biochemistry, 149, 233.Google Scholar
  47. Coudray, M. R., Canevascini, G. & Meier, H. (1982). Biochemical Journal, 203, 277.Google Scholar
  48. Coughlan, M. P. (1985). In Biotechnology and Genetic Engineering Reviews. Vol. 3, ed. G. E. Russell. Interscience, Newcastle-upon-Tyne, UK, p. 37.Google Scholar
  49. Coughlan, M. P. (1989). Mechanism of cellulose degradation by fungi and bacteria. In Proceedings OECD Workshop Cell Wall: Structure, Degradation and Utilization, ed. J. Delort-Laval. Journal of Animal Feed Science. (In press.)Google Scholar
  50. Coughlan, M. P. & Folan, M. A. (1979). Comparative Biochemistry and Physiology, 10, 103.Google Scholar
  51. Coughlan, M. P. & Ljungdahl, L. G. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 11.Google Scholar
  52. Coughlan, M. P., Mehra, R. K., Considine, P. J., O’Rorke, A. & Puls, J. (1985). Biotechnology and Bioengineering Symposium, 15, 447.Google Scholar
  53. Coughlan, M. P., Moloney, A. P., McCrae, S. I. & Wood, T. M. (1987). Biochemical Society Transactions, 15, 263.Google Scholar
  54. Cowling, E. B. (1961). US Dept Agric. Tech. Bull. 1258, p. 1.Google Scholar
  55. Cowling, E. B. (1975). Biotechnology and Bioengineering Symposium, 5, 163.Google Scholar
  56. Crawford, R. L. (1981). Lignin Biodegradation and Transformation. Wiley, New York.Google Scholar
  57. Dekker, R. F. H. (1980). Journal of General Microbiology, 120, 309.Google Scholar
  58. De Montelambert, M. R. (1983). In Energy from Biomass, 2nd EC Conference, eds A. Strub, B. Chartier & G. Schleser. Elsevier Applied Science, London, p. 82.Google Scholar
  59. Deshpande, M. V. & Eriksson, K.-E. (1984). Enzyme and Microbial Technology, 6, 338.Google Scholar
  60. Deshpande, M. V., Eriksson, K.-E. & Pettersson, B. (1978). European Journal of Biochemistry, 90, 191.Google Scholar
  61. Deshpande, V., Rao, M., Keskar, S. & Mishra, C. (1984). Enzyme and Microbial Technology, 6, 371.Google Scholar
  62. Dunlap, C. E., Thomson, J. & Chiang, L. C. (1976). Association of Industrial and Chemical Engineering Symposium Series, 72, 58.Google Scholar
  63. Dunne, C. P. (1982). Enzyme Engineering, 6, 355.Google Scholar
  64. Enari, T.-M. (1983). In Microbial Enzymes and Biotechnology, ed. W. M. Fogarty. Elsevier Applied Science Publishers, London, p. 183.Google Scholar
  65. Enari, T.-M. & Niku-Paavola, M.-L. (1987). CRC Critical Reviews in Biotechnology, 5, 67.Google Scholar
  66. Eriksson, K.-E. (1975). In Symposium on Enzymatic Hydrolysis of Cellulose, eds M. Bailey, T.-M. Enari & M. Linko. SITRA, Helsinki, p. 263.Google Scholar
  67. Eriksson, K.-E. (1978). Biotechnology and Bioengineering, 20, 317.Google Scholar
  68. Eriksson, K.-E. (1981). In Trends in the Biology of Fermentations for Fuels and Chemicals, ed. A. Hollaender. Plenum Press, New York, p. 19.Google Scholar
  69. Eriksson, K.-E. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 285.Google Scholar
  70. Eriksson, K.-E. & Pettersson, B. (1975a). European Journal of Biochemistry, 51, 193.Google Scholar
  71. Eriksson, K.-E. & Pettersson, B. (1975b). European Journal of Biochemistry, 51, 213.Google Scholar
  72. Eriksson, K.-E. & Pettersson, B. (1982). European Journal of Biochemistry, 124, 635.Google Scholar
  73. Eriksson, K.-E. & Wood, T. M. (1985). In Biosynthesis and Biodegradation of Wood Components, ed. T. Higuchi. Academic Press, New York, p. 469.Google Scholar
  74. Eriksson, K.-E., Pettersson, B. & Westermark, U. (1974). FEBS Letters, 49, 282.Google Scholar
  75. Eriksson, K.-E., Grünewald, A., Nilsson, T. & Vallander, L. (1980). Holzforschung, 34, 207.Google Scholar
  76. Eveleigh, D. E. (1982). In Biomass Utilization, ed. W. A. Côté. NATO Advanced Study Institute, Series A: Life Sciences. Plenum Press, New York, Vol. 67, p. 365.Google Scholar
  77. Eveleigh, D.E. (1984). In Current Perspectives in Microbial Ecology, eds M. J. Klug & C. A. Reddy. Amer. Soc. Microbiol., Washington, p. 553.Google Scholar
  78. Eveleigh, D. E. (1987). Philosophical Transactions of the Royal Society of London, A321, 435.Google Scholar
  79. Fan, L.-T., Gharpuray, M. M. & Lee, Y. H. (1987). Cellulose Hydrolysis, Biotechnology Monographs, Vol. 3, Springer-Ver lag, Berlin.Google Scholar
  80. Fägerstam, L. G. & Pettersson, L. G. (1979). FEBS Letters, 98, 363.Google Scholar
  81. Fägerstam, L. G. & Pettersson, L. G. (1980). FEBS Letters, 119, 97.Google Scholar
  82. Fägerstam, L. G., Pettersson, L. G. & Engström, J. A. (1984). FEBS Letters, 167, 309.Google Scholar
  83. Fähnrich, P. & Irrgang, K. (1984). Biotechnology Letters, 6, 251.Google Scholar
  84. Feldman, K. A., Lovett, J. S. & Tsao, G. T. (1988). Enzyme and Microbial Technology, 10, 262.Google Scholar
  85. Fujii, M. & Shimizu, M. (1986). Biotechnology and Bioengineering, 28, 878.Google Scholar
  86. Gaden, E. L., Mandels, M. & Reese, E. T. (eds) (1976). Enzymatic Conversion of Google Scholar
  87. Cellulosic Materials: Technology and Applications, Biotechnology and Bioengineering Symposium, 6.Google Scholar
  88. Gascoigne, J. A. & Gascoigne, M. M. (1960). Biological Degradation of Cellulose. Butterworth, London.Google Scholar
  89. Ghose, T. K. (ed.) (1978). Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein. IIT, New Delhi.Google Scholar
  90. Gilbert, I. G. & Tsao, G T. (1983). Annual Report.of Fermentation Processes, 7, 232.Google Scholar
  91. Gilligan, W. & Reese, E. T. (1954). Canadian Journal of Microbiology, 1, 90.Google Scholar
  92. Gong, C. S. & Tsao, G. T. (1979). Annual Report of Fermentation Processes, 3, 111.Google Scholar
  93. Grethlein, H. E. (1985). Biotechnology, 3, 155.Google Scholar
  94. Griffin, H., Dintzis, F. R., Knill, L. & Baker, F. L. (1984). Biotechnology and Bioengineering, 26, 296.Google Scholar
  95. Gritzali, M. & Brown, R. D. (1979). The cellulase system of Trichoderma. Relationships between purified extracellular systems from induced or cellulose-grown cells. In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, eds R. D. Brown, Jr & L. Jurasek. Advances in Chemistry Series, Vol. 18. American Chemical Society, Washington, DC, p. 237.Google Scholar
  96. Grohman, K. & Villet, R. (1983). In Bioconversion Systems, ed. D. L. Wise. CRC Press, Boca Raton, FL, p. 1.Google Scholar
  97. Gum, E. K. & Brown, R. D., Jr (1976). Biochimica et Biophysica Acta, 446, 371.Google Scholar
  98. Gum, E. K. & Brown, R. D., Jr (1977). Biochimica et Biophysica Acta, 492, 225.Google Scholar
  99. Hajny, G. J. & Reese, E. T. (eds) (1969). Cellulases and their applications. Advances in Chemistry Series, Vol. 95. American Chemical Society, Washington, DC.Google Scholar
  100. Håkansson, O., Fägerstam, L. G., Pettersson, L. G. & Andersson, L. (1979). Biochemical Journal, 179, 141.Google Scholar
  101. Hall, D. O. (1983). In Energy from Biomass, 2nd EC Conference, eds A. Strub, B. Chartier & G. Schleser. Elsevier Applied Science, London, p. 43.Google Scholar
  102. Halliwell, G. (1975). In Symposium on Enzymatic Hydrolysis of Cellulose, eds M. Bailey, T.-M. Enari & M. Linko. SITRA, Helsinki, p. 319.Google Scholar
  103. Halliwell, G. & Griffin, M. (1973). Biochemical Journal, 135, 587.Google Scholar
  104. Halliwell, G. & Riaz, M. (1970). Biochemical Journal, 116, 35.Google Scholar
  105. Halliwell, G. & Vincent, R. (1981). Biochemical Journal, 199, 409.Google Scholar
  106. Halliwell, G., Wahab, M. N. B. A. & Patel, A. H. (1985). Journal of Applied Biochemistry, 7, 43.Google Scholar
  107. Ham, J. T. & Wilhams, D. G. (1970). Acta Crystallographica, B26, 1373.Google Scholar
  108. Hanstein, E. G. & Whittaker, D. R. (1963). Canadian Journal of Biochemistry and Physiology, 41, 707.Google Scholar
  109. Hayashida, S. & Mo, K. (1986). Applied and Environmental Microbiology, 51, 1041.Google Scholar
  110. Hayashida, S. & Yoshioka, H. (1980). Agricultural and Biological Chemistry, 44, 481.Google Scholar
  111. Heath, I. B., Bauchop, T. & Skipp, R. A. (1983). Canadian Journal of Botany, 61, 295.Google Scholar
  112. Henrissat, B., Driguez, H., Viet, C. & Schülein, M. (1985). Biotechnology, 3, 722.Google Scholar
  113. Highley, T. L. (1975a). Forests Product Journal, 25, 38.Google Scholar
  114. Highley, T. L. (1975b). Wood Fibre, 6, 275.Google Scholar
  115. Hurst, P. L., Nielsen, J., Sullivan, P. A. & Shepherd, M. G. (1977a). Biochemical Journal, 165, 33.Google Scholar
  116. Hurst, P. L., Sullivan, P. A. & Shepherd, M. G. (19776). Biochemical Journal, 167, 549.Google Scholar
  117. Hurst, P. L., Sullivan, P. A. & Shepherd, M. G. (1978). Biochemical Journal, 169, 389.Google Scholar
  118. Kanda, T., Wakabayashi, K. & Nisizawa, K. (1976). Journal of Biochemistry, 79, 997.Google Scholar
  119. Kersten, P. J. & Kirk, T. K. (1987). Journal of Bacteriology, 169, 2195.Google Scholar
  120. Kirk, T. K. & Highley, T. L. (1973). Phytopathology, 63, 1338.Google Scholar
  121. Knowles, J., Teeri, T., Lehtovaara, P., Penttilä, M. & Saloheimo, M. (1988a). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 153.Google Scholar
  122. Knowles, J. K. C., Lehtovaara, P., Murray, M. & Sinnott, M. L. (19886). Journal of the Chemical Society—Chemical Communications, 1401.Google Scholar
  123. Koenigs, J. W. (1975). Biotechnology and Bioengineering Symposium, 5, 151.Google Scholar
  124. Kubicek, C. P. (1981). European Journal of Applied Microbiology and Biotechnology, 13, 226.Google Scholar
  125. Kubicek, C. P., Panda, T., Schreferl-Kunar, G., Gruber, F. & Messner, R. (1987). Canadian Journal of Microbiology, 33, 698.Google Scholar
  126. Kyriacou, A., Neufeld, R. J. & MacKenzie, C. R. (1987). Enzyme and Microbial Technology, 9, 25.Google Scholar
  127. Kyriacou, A., Neufeld, R. J. & McKenzie, C. R. (1988). Enzyme and Microbial Technology, 10, 675.Google Scholar
  128. Labudova, I. & Farkas, V. (1983). Biochimica et Biophysica Acta, 744, 135.Google Scholar
  129. Lachke, A. H. & Deshpande, M. V. (1988). FEMS Microbiological Reviews, 54, 177.Google Scholar
  130. Ladisch, M. R. & Tsao, G. T. (1986). Enzyme and Microbial Technology, 8, 66.Google Scholar
  131. Ladisch, M. R., Lin, K. W., Voloch, M. & Tsao, G. T. (1983). Enzyme and Microbial Technology, 5, 82.Google Scholar
  132. Lehninger, A. L. (1982). Principles of Biochemistry. Worth, New York.Google Scholar
  133. Lehtovaara, P., Knowles, J., André, L., Penttilä, M., Teeri, T., Salovuori, I., Niku-Paavola, M. J. & Enari, T.-M. (1986). In Biotechnology in the Pulp and Paper Industry, Third International Conference, eds K.-E. Eriksson & P. Ander. STFI, Stockholm, p. 90.Google Scholar
  134. Li, H., Flora, R. M. & King, K. W. (1965). Archives of Biochemistry and Biophysics, 111, 439.Google Scholar
  135. Liese, W. (1970). Annual Review of Phytopathology, 8, 231.Google Scholar
  136. Ljungdahl, L. G. & Eriksson, K.-E. (1985). In Advances in Microbial Ecology, Vol. 5, ed K. C. Marshall. Plenum Press, New York, p. 237.Google Scholar
  137. Lloyd, A. (1984). New Scientist, no. 1047, 21.Google Scholar
  138. Lützen, N. W., Nielsen, M. H., Oxenboell, K. M., Schülein, M. & Stentebjerg-Olesen, B. (1983). Philosophical Transactions of the Royal Society of London, B300, 283.Google Scholar
  139. Mandels, M. (1975). Biotechnology and Bioengineering Symposium, 5, 81.Google Scholar
  140. Mandels, M. (1985). Biochemical Society Transactions, 13, 414.Google Scholar
  141. Mandels, M. & Reese, E. T. (1964). Developments in Industrial Microbiology, 5, 5.Google Scholar
  142. Marchessault, R. H. & St-Pierre, J. (1980). In Future Sources of Organic Raw Material—Chemrawn, eds. L. E. St-Pierre & G. R. Brown. Pergamon Press, Oxford, p. 613.Google Scholar
  143. Marchessault, R. H., Malhatra, S. L., Jones, A. Y. & Perovic, A. (1983). In Wood and Agricultural Residues. Research on Use for Feed, Fuels and Chemicals, ed. E. J. Soltes. Academic Press, New York, p. 401.Google Scholar
  144. Marsden, W. L. & Gray, P. P. (1986). CRC Critical Reviews in Biotechnology, 3, 235.Google Scholar
  145. Marx-Figini, M. (1982). In Cellulose and Other Natural Polymer Systems: Biosynthesis, Structure and Degradation, ed. R. M. Brown, Jr. Plenum Press, New York, p. 243.Google Scholar
  146. Marx-Figini, M. & Schultz, G. V. (1966). Naturwissenschaften, 53, 466.Google Scholar
  147. McHale, A. & Coughlan, M. P. (1980). FEBS Letters, 117, 319.Google Scholar
  148. McHale, A. & Coughlan, M. P. (1981a). Biochimica et Biophysica Acta, 662, 152.Google Scholar
  149. McHale, A. & Coughlan, M. P. (1981b). Biochimica et Biophysica Acta, 662, 145.Google Scholar
  150. McHale, A. & Coughlan, M. P. (1982). Journal of General Microbiology, 128, 2327.Google Scholar
  151. Merivuori, H., Siegler, K. M., Sands, J. A. & Montenecourt, B. S. (1985). Biochemical Society Transactions, 13, 411.Google Scholar
  152. Mishra, C., Vaidya, M., Rao, M. & Deshpande, V. (1983). Enzyme and Microbial Technology, 5, 430.Google Scholar
  153. Moloney, A. P., McCrae, S. I., Wood, T. M. & Coughlan, M. P. (1985). Biochemical Journal, 225, 365.Google Scholar
  154. Morpeth, F. F. (1985). Biochemical Journal, 228, 557.Google Scholar
  155. Morpeth, F. F. & Jones, G. D. (1986). Biochemical Journal, 236, 221.Google Scholar
  156. Murphy-Holland, K. & Eveleigh, D. E. (1985). In Abstracts 85th American Society for Microbiology, American Society of Microbiology, Washington, DC, K-130.Google Scholar
  157. Nakayama, M. J., Tomita, Y., Suzuki, H. & Nisizawa, K. (1976). Journal of Biochemistry, 79, 955.Google Scholar
  158. Niku-Paavola, M.-L. (1984). In Soviet—Finnish Seminar on Bioconversion of Plant Raw Materials by Microorganisms. USSR Academy of Sciences, Puschino, p. 26.Google Scholar
  159. Niku-Paavola, M.-L., Lappalainen, A., Enari, T.-M. & Nummi, M. (1985). Biochemical Journal, 231, 75.Google Scholar
  160. Nummi, M., Niku-Paavola, M.-L., Lappalainen, A., Enari, T.-M. & Raunio, V. (1983). Biochemical Journal, 215, 677.Google Scholar
  161. Okada, G. & Tanaka, Y. (1988). Agricultural and Biological Chemistry, 52, 2981.Google Scholar
  162. Oipin, C. G. (1975). Journal of General Microbiology, 91, 249.Google Scholar
  163. Orpin, C. G. (1977a). Journal of General Microbiology, 99, 107.Google Scholar
  164. Orpin, C. G. (1977b). Journal of General Microbiology, 101, 181.Google Scholar
  165. Orpin, C. G. (1977c). Journal of General Microbiology, 98, 423.Google Scholar
  166. Orpin, C. G. (1981). Journal of General Microbiology, 123, 287.Google Scholar
  167. Orpin, C. G. & Joblin, K. N. (1988). In The Rumen Microbial Ecosystem, ed. P. N. Hobson. Elsevier Applied Science, London, p. 129.Google Scholar
  168. Orpin, C. G. & Letcher, A. J. (1979). Current Microbiology, 3, 121.Google Scholar
  169. Otjen, L. & Blanchette, R. A. (1982). Canadian Journal of Botany, 60, 2770.Google Scholar
  170. Paice, M. G., Desrochers, M., Jurasek, L., Roy, C., Rollin, C. F., DeMiguel, E. & Yaguchi, M. (1984). Biotechnology, 2, 535.Google Scholar
  171. Pearce, P. D. & Bauchop, T. (1985). Applied and Environmental Microbiology, 49, 1265.Google Scholar
  172. Penttilä, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R. & Knowles, J. (1986). Gene, 45, 253.Google Scholar
  173. Pettersson, G. (1969). Archives of Biochemistry and Biophysics, 130, 286.Google Scholar
  174. Pettersson, L. G. (1975). In Symposium on Enzymatic Hydrolysis of Cellulose, eds M. Bailey, T.-M. Enari & M. Linko. SITRA, Helsinki, p. 255.Google Scholar
  175. Phillips, D. C. (1968). In Proceedings Seventh International Congress of Biochemistry, International Union of Biochemistry, Vol. 36, p. 63.Google Scholar
  176. Pourquié, J., Warzywoda, F., Chevron, F., Théry, M., Lonchamp, D. & Vandecasteele, J. P. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 72.Google Scholar
  177. Puls, J., Poutanen, K., Körner, H.-U. & Viikari, L. (1985). Applied Microbiology and Biotechnology, 22, 416.Google Scholar
  178. Puri, V. P. (1984). Biotechnology and Bioengineering, 26, 1219.Google Scholar
  179. Rabinovitch, M. L., Van Viet, N. & Klyosov, A. A. (1982). Biokhimiya, 47, 465.Google Scholar
  180. Rabinovitch, M. L., Chernoglazov, V. M. & Klyosov, A. A. (1983). Biokhimiya, 48, 369.Google Scholar
  181. Rabinovitch, M. L., Van Viet, N. & Klyosov, A. A. (1986). Prikladnaya Biokhimiya I Mikrobiologiya, 22, 70.Google Scholar
  182. Rees, D. A., Morris, E. R., Thorn, D. & Madden, J. K. (1982). In Polysaccharides, Vol. I, ed. G. O. Aspinall. Academic Press, New York, p. 195.Google Scholar
  183. Reese, E. T. (1982). Process Biochemistry, 17, 2.Google Scholar
  184. Reese, E. T., Siu, R. G. H. & Levinson, H. S. (1950). Journal of Bacteriology, 59,485.Google Scholar
  185. Ryu, D. D. Y., Kim, C. & Mandels, M. (1984). Biotechnology and Bioengineering, 26, 488.Google Scholar
  186. Sadana, J. C. & Patil, R. V. (1985). Journal of General Microbiology, 131, 1917.Google Scholar
  187. Saddler, J. N. (1986). Microbiological Science, 3, 84.Google Scholar
  188. Saddler, J. N, Hogan, C. M. & Mes-Hartree, M. (1986). In Biotechnology in the Pulp and Paper Industry, Third International Conference, eds K.-E. Eriksson & P. Ander. STFI, Stockholm, p. 96.Google Scholar
  189. Saloheimo, M., Lehtovaara, P., Penttilä, M., Teeri, T. T., Ståhlberg, J., Johansson, G., Pettersson, G., Claeyssens, M., Tomme, P. & Knowles, J. K. C. (1988). Gene, 63, 11.Google Scholar
  190. Sasaki, T., Tanaka, T., Nanbu, N., Sato, Y. & Kainuma, K. (1979). Biotechnology and Bioengineering, 21, 1031.Google Scholar
  191. Schmuck, M., Pilz, I., Hayn, M. & Esterbauer, H. (1986). Biotechnology Letters, 8, 397.Google Scholar
  192. Schwald, W., Chan, M., Brownell, H. H. & Saddler, J. N. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 303.Google Scholar
  193. Selby, K. (1969). The purification and properties of the C1 component of the cellulose complex. In Celluloses and their Applications, eds G. J. Hajny & E. T. Reese. Advances in Chemistry Series, Vol. 95, American Chemical Society, Washington, DC, pp. 34–50.Google Scholar
  194. Shakespeare, W. (1600). The Second part of Henrie the fourth, continuing to his death, and coronation of Henrie the fift. With the humours of Sir lohn Falstaffe, and swaggering Pistoll. Printed by V. S. for Andrew Wise & William Aspley, London. From the title page of the Elizabethan Club copy of the only early Quarto Edition, as illustrated in The Second Part of King Henry the Fourth, ed. S. B. Hemingway, Yale University Press, New Haven and London, 1921, 6th. printing, 1965. The quotation is from act IV, sc. 4, lines 107–108.Google Scholar
  195. Sheir-Neiss, G. & Montenecourt, B. S. (1984). Applied Microbiology and Biotechnology, 20, 46.Google Scholar
  196. Shepherd, M. G., Cole, A. L. & Tong, C. C. (1981). Biochemical Journal, 193, 67.Google Scholar
  197. Sheppard, W. J. & Lipinsky, E. S. (1983). In Energy from Biomass, 2nd EC Conference, eds A. Strub, B. Chartier & G. Schleser. Elsevier Applied Science, London, p. 63.Google Scholar
  198. Shikata, S. & Nisizawa, K. (1975). Journal of Biochemistry, 78, 499.Google Scholar
  199. Shoemaker, S., Schweickart, V. L., Ladner, M. B., Gelfand, D. H., Kwok, S., Myambo, K. & Innis, M. A. (1983a). Biotechnology, 1, 691.Google Scholar
  200. Shoemaker, S., Watt, K., Tsitovsky, G & Cox, R. (1983b). Biotechnology, 1, 687.Google Scholar
  201. Sienko, M. & Plane, R. (1976). Chemistry. McGraw-Hill, New York.Google Scholar
  202. Sims, P., Brown, A., James, C., Raeder, U., Schrank, A. & Broda, P. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 365.Google Scholar
  203. Sinskey, A. J. (1983). In Organic Chemicals from Biomass, ed. D. W. Wise. Benjamin Cummings, Menlo Park, CA, p. 1.Google Scholar
  204. Soltes, E. J. (ed) (1983). Wood and Agricultural Residues. Research on Use for Feed, Fuels and Chemicals. Academic Press, New York.Google Scholar
  205. Sprey, B. & Lambert, C. (1983a). FEMS Microbiology Letters, 23, 227.Google Scholar
  206. Sprey, B. & Lambert, C. (1983b). FEMS Microbiology Letters, 18, 217.Google Scholar
  207. Stephens, G. R. & Heichel, G. H. (1975). Biotechnology and Bioengineering Symposium, 5, 27.Google Scholar
  208. Streamer, M., Eriksson, K.-E. & Pettersson, B. (1975). European Journal of Biochemistry, 59, 607.Google Scholar
  209. Stutzenberger, F. (1988). Letters in Applied Microbiology, 6, 1.Google Scholar
  210. Tailliez, P., Girard, H., Longin, R., Béguin, P. & Millet, J. (1989a). Applied and Environmental Microbiology, 55, 203.Google Scholar
  211. Tailliez, P., Girard, H., Longin, R., Béguin, P. & Millet, J. (19896). Applied and Environmental Microbiology, 55, 207.Google Scholar
  212. Teeri, T. T., Salovuori, I. & Knowles, J. (1983). Biotechnology, 1, 696.Google Scholar
  213. Teeri, T. T., Lehtovaara, P., Kauppinen, S., Salovuori, I. & Knowles, J. (1987). Gene, 51, 43.Google Scholar
  214. Tomme, P., Van Tilbeurgh, H., Pettersson, G, Van Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T. & Claeyssens, M. (1988). European Journal of Biochemistry, 170, 575.Google Scholar
  215. Tonnesen, B. & Ellefsen, O. (1971). In Cellulose and Cellulose Derivatives, Vol. 5, Part IV, eds N. M. Bikales & L. Segal. Wiley, New York, p. 265.Google Scholar
  216. Vaheri, M. P. (1982a). Journal of Applied Biochemistry, 4, 153.Google Scholar
  217. Vaheri, M. P. (1982b). Journal of Applied Biochemistry, 4, 356.Google Scholar
  218. Vaheri, M. P. (1983). Journal of Applied Biochemistry, 5, 66.Google Scholar
  219. Vaheri, M. P. (1985). In Monitoring and Control of Plant Raw Material Bioconversion, VTI Symp. 60, Espoo, Finland, p. 166.Google Scholar
  220. Van Arsdell, J. N., Kwok, S., Schweickart, V. L., Ladner, M. B., Gelfand, D. H. & Innis, M. A. (1987). Biotechnology, 5, 60.Google Scholar
  221. Van Tilbeurgh, H. & Claeyssens, M. (1985). FEBS Letters, 187, 283.Google Scholar
  222. Van Tilbeurgh, H., Claeyssens, M. & DeBruyne, C. K. (1982). FEBS Letters, 149, 152.Google Scholar
  223. Van Tilbeurgh, H., Pettersson, L. G., Bhikhabhai, R. & Claeyssens, M. (1985). European Journal of Biochemistry, 148, 329.Google Scholar
  224. Van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R. & Pettersson, G. (1986). FEBS Letters, 204, 223.Google Scholar
  225. Vernon, C. A. & Banks, B. E. C. (1963). Biochemical Journal, 86, 7P.Google Scholar
  226. Watson, T. G., Nelligan, I. & Lessing, L. (1984). Biotechnology Letters, 6, 667.Google Scholar
  227. Weimer, P. J. & Weston, W. M. (1985). Biotechnology and Bioengineering, 27, 1540.Google Scholar
  228. Westermark, U. & Eriksson, K.-E. (1974a). Acta Chemica Scandinavica, B28, 204.Google Scholar
  229. Westermark, U. & Eriksson, K.-E. (1974b). Acta Chemica Scandinavica, B28, 209.Google Scholar
  230. Westermark, U. & Eriksson, K.-E. (1975). Acta Chemica Scandinavica, B29, 419.Google Scholar
  231. White, A. R. (1982). In Cellulose and Other Natural Polymer Systems. Biogenesis, Structure and Degradation, ed. R. M. Brown Jr Plenum Press, New York, p. 489.Google Scholar
  232. Wilke, C. R. (ed) (1975). Biotechnology and Bioengineering Symposium, 5.Google Scholar
  233. Willick, G. E. & Seligy, V. L. (1985). European Journal of Biochemistry, 151, 89.Google Scholar
  234. Wood, T. M. (1969). Biochemical Journal, 115, 457.Google Scholar
  235. Wood, T. M. (1971). Biochemical Journal, 121, 353.Google Scholar
  236. Wood, T. M. (1975). Biotechnology and Bioengineering Symposium, 5, 111.Google Scholar
  237. Wood, T. M. (1980). In OECD Workshop No. 2 Conversion of Cellulosic Materials, ed. B. A. Rijkens, IBVL, Wageningen, p. 246.Google Scholar
  238. Wood, T. M. (1985). Biochemical Society Transactions, 13, 407.Google Scholar
  239. Wood, T. M. & Bhat, K. M. (1988). Methods in Enzymology, 160, 87.Google Scholar
  240. Wood, T. M. & McCrae, S. I. (1972). Biochemical Journal, 128, 1183.Google Scholar
  241. Wood, T. M. & McCrae, S. I. (1975). In Symposium on Enzymatic Hydrolysis of Google Scholar
  242. Cellulose, eds M. Bailey, T.-M. Enari & M. Linko. SITRA, Helsinki, p. 231.Google Scholar
  243. Wood, T. M. & McCrae, S. I. (1977). Carbohydrate Research, 57, 117.Google Scholar
  244. Wood, T. M. & McCrae, S. I. (1978). Biochemical Journal, 171, 61.Google Scholar
  245. Wood, T. M. & McCrae, S. I. (1979). In Advances in Chemistry Series, 181, eds R. D. Brown, Jr & L. Jurasek. American Chemical Society, Washington, DC, p. 181.Google Scholar
  246. Wood, T. M. & McCrae, S. I. (1982). Carbohydrate Research, 110, 291.Google Scholar
  247. Wood, T.-M. & McCrae, S. I. (1986). Carbohydrate Research, 148, 331.Google Scholar
  248. Wood, T. M., McCrae, S. I. & Macfarlane, C. C. (1980). Biochemical Journal, 189, 51.Google Scholar
  249. Wood, T. M., Wilson, C. A., McCrae, S. I. & Joblin, K. N. (1986). FEMS Microbiology Letters, 34, 37.Google Scholar
  250. Wood, T. M., McCrae, S. I., Wilson, C. A., Bhat, K. M. & Gow, L. A. (1988). In Biochemistry and Genetics of Cellulose Degradation, eds J.-P. Aubert, P. Béguin & J. Millet. Academic Press, London, p. 31.Google Scholar
  251. Wood, T. M., McCrae, S. I. & Bhat, K. M. (1989). Biochemical Journal, 260, 37.Google Scholar
  252. Wood, W. A. & Kellogg, S. T. (eds) (1988). Biomass—Part A, Methods in Enzymology, 160, Academic Press, New York.Google Scholar
  253. Yaguchi, M., Roy, R. C., Rollin, C. F., Paice, M. G. & Jurasek, L. (1983). Biochemistry and Biophysics Research Communications, 116, 408.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Michael P. Coughlan
    • 1
  1. 1.Department of BiochemistryUniversity CollegeGalwayRepublic of Ireland

Personalised recommendations