Hydrothermal Preparation of Fine Powders

  • Shigeyuki Sōmiya

Abstract

There are several methods for producing very fine powders under hydrothermal conditions, including: (1) hydrothermal oxidation, (2) hydrothermal precipitation, (3) hydrothermal crystallization, hydrothermal synthesis, (5) hydrothermal decomposition, (6) hydro- thermal dehydration, (7) hydrothermal anodic oxidation, (8) reactive electrode submerged arc, (9) hydrothermal mechanochemical reaction. This chapter describes these processes.

Keywords

Fine Powder Hydrothermal Synthesis Hydrothermal Condition Hydrothermal Crystallization Chromium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. W. Morey, Hydrothermal synthesis, J. Am. Ceram. Soc., 36(9), 279 – 285 (1953).CrossRefGoogle Scholar
  2. 2.
    R. Roy and O. F. Tuttle, Investigations under hydrothermal conditions. In Physics and Chemistry of the Earth, ed. L. H. Ahrens, K. Pankama and S. K. Runcorn, Pergamon Press, Oxford, Vol. 1, 1955, pp. 138–80.Google Scholar
  3. 3.
    R. A. Laudise and J. W. Nielsen, Hydrothermal crystal growth, Solid- State Phys., 12, 149 – 222 (1961).CrossRefGoogle Scholar
  4. 4.
    R. A. Laudise, The growth of single crystals. In Hydrothermal Growth, Prentice Hall, Englewood Cliffs, N.J., 1970, pp. 275–93.Google Scholar
  5. 5.
    R. A. Laudise, Hydrothermal growth. In Crystal Growth: An Introduction ed. P. Hartman. North-Holland, Amsterdam, 1973, pp. 163–97.Google Scholar
  6. 6.
    . A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem. Int. Ed. Engl., 24, 1026 – 1040 (1985).CrossRefGoogle Scholar
  7. 7.
    . A. Rabenau, The role of hydrothermal synthesis in materials science, J. Mater. Educ., 10(5), 543 – 592 (1988).Google Scholar
  8. 8.
    A. A. Ballman and R. A. Laudise, Hydrothermal growth. In The Art and Science of Growing Crystals, ed. J. J. Gilman, Wiley, New York, 1963, pp. 231–51.Google Scholar
  9. 9.
    L. N. Demianets, V. A. Kuznetzov and A. N. Lobachev, Growth and synthesis in hydrothermal solutions. In Modern Crystallography III ed. A. A. Cherno, Springer-Verlag, Berlin, 1984, pp. 380–406.Google Scholar
  10. 10.
    S. Sōmiya, Hydrothermal synthesis of electronic and magnetic materials, Zairyo Kagaku, 13, 55–62, 143–51 (1976).Google Scholar
  11. 11.
    J. Asahara, K. Nagai and S. Harada, Synthetic quartz crystals by large autoclaves-Their quality and characterization. In Proceedings of the First International Symposium on Hydrothermal Reactions, ed. S. Sōmiya, Gakujutsu Bunken Fukyu Kai, Tokyo, 1983, pp. 430–41.Google Scholar
  12. 12.
    T. Oota, H. Saito and I. Yamai, Synthesis of potassium hexatitanate fibers by the hydrothermal dehydration, J. Crystal Growth, 46, 331–8 (1979).CrossRefGoogle Scholar
  13. 13.
    S. E. Yoo, M. Yoshimura and S. Sōmiya, Preparation of BaTiO3 and LiNbO3 powders by hydrothermal anodic oxidation. In Sintering’87, ed. S. Sōmiya, M. Shimada, M. Yoshimura and R. Watanabe. Elsevier Applied Science Publishers. London, UK, 1989, pp. 108–13.Google Scholar
  14. 14.
    . S. E. Yoo, M. Yoshimura and S. Sōmiya, Direct preparation of BaTiO3 powders from titanium metal by anodic oxidation under hydrothermal conditions. J. Mat. Sci. Letters, 8, 530 – 2 (1989).CrossRefGoogle Scholar
  15. 15.
    . A. Kumar and R. Roy, RESA-A wholly new process for fine oxide powder preparation, J. Mater. Res., 3(6), 1373 – 7 (1988).CrossRefGoogle Scholar
  16. 16.
    . A. Kumar and R. Roy, Reactive-electrode submerged arc process for producing fine non-oxide powders, J. Am. Ceram. Soc., 72(2), 354 - 6 (1989).CrossRefGoogle Scholar
  17. 17.
    . M. Yoshimura, N. Kubotera, T. Norma and S. Sōmiya, Synthesis of Ba-Ferrite fine particle by hydrothermal attrition mixing. J. Ceram. Soc. Int. Ed., 97, 14 – 19 (1989).Google Scholar
  18. 18.
    . M. Yoshimura, H. Ōhira and S. Sōmiya, Hydrothermal oxidation of titanium metal, Yogyo Kyokai Shi, 93(17), 359 – 63 (1985).Google Scholar
  19. 19.
    . S. Sōmiya, M. Yoshimura, Z. Nakai, K. Hishinuma and T. Kumaki, Microstructure development of hydrothermal powders and ceramics. In Ceramic Microstructure’86, ed. J. A. Pask and H. G. Evans, Plenum Press, 1987, pp. 465 – 74.Google Scholar
  20. 20.
    . K. Hishinuma, T. Kumaki, Z. Nakai, M. Yoshimura and S. Sōmiya, Characterization of Y2O3–ZrO2 powders synthesized under hydrothermal conditions. Advances in Ceramics, 24, 201 – 9 (1988).Google Scholar
  21. 21.
    . M. Yoshimura and S. Sōmiya, Fine zirconia powders by hydrothermal processing, Rept. Res. Lab. Eng. Mat. Tokyo Institute of Technology, No. 9, 53 – 64 (1984).Google Scholar
  22. 22.
    . M. G. M. U. Ismail, M. Yoshimura and S. Sōmiya, Synthesis of magnetite using ilmenite under hydrothermal conditions. J. Mat. Sci. Letters 1(1), 19 – 21 (1985).CrossRefGoogle Scholar
  23. 23.
    M. Yoshimura, S. T. Song and S. Sōmiya, Hydrothermal synthesis and sintering of LaCrO3. In Ferrites, ed. H. Watanabe, S. Iida and M. Sugimoto, Academic Publications, 1981, pp. 429-32.Google Scholar
  24. 24.
    S. Sōmiya and M. Yoshimura, Hydrothermal preparation of fine powders. In Fundamental Structural Ceramics, ed. S. SōmiyaR. C. Bradt, Terra Sci. Pub. Co., 1987, pp. 11-29.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Shigeyuki Sōmiya
    • 1
  1. 1.The Nishi Tokyo UniversityTokyoJapan

Personalised recommendations