A Strategy for Research on Synthesis of Ceramics Materials

  • Rustum Roy


Advances in materials research are closely correlated with the discovery or purposive synthesis of new materials or new processes for preparing materials. During the last two or three decades, there has been emerging a capacity to ‘design’ materials optimized for a particular use or device, and to synthesize new materials to these specifications. However, serendipity still plays a major role in new materials development, and the question of the optimum research strategy for materials synthesis studies has received insufficient attention. Such research strategy may be just as important as new instruments in the search for new materials.

A brief review of novel syntheses and new processes across the whole field of ceramics is followed by examples from the author’s laboratory of the synthesis of new materials involving unit cell level manipulation of composition, and changes at the macromolecular level and at the nanometer level. The new materials discussed range from zero-expansion ceramics to nanocomposites and superconductors and new processes range from those for making powders to those for ultra-high pressure phases. The case studies illustrate the author’s research strategy, combining state-of-the-art empirical ‘theory’ with opportunistic response to serendipitous observations.


Ceramic Material Zirconium Oxychloride Opportunistic Response Transformation Toughening Serendipitous Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Roy, HTSC: Restoring scientific and policy perspective. In Proceedings of the World Congress on Superconductivity, ed. C. G. Burnham. World Scientific, New Jersey, 1988, pp. 27–41.Google Scholar
  2. 2.
    J.H. Helm, Chair, USNAS, Committee on Science, Engineering and Public Policy, Panel on Superconductivity. NAS, Washington, DC, 1988.Google Scholar
  3. 3.
    A. Weinberg, Minerva, I, 159 (1963).Google Scholar
  4. 4.
    R. E. Newnham and L. E. Cross, Mater. Res. Bull., 9, 927 (1974).CrossRefGoogle Scholar
  5. 5.
    M. L. Keith and R. Roy, Am. Mineralogist, 39, 1–23 (1959).Google Scholar
  6. 6.
    R. Roy, Science, 238, 1664 (1987).CrossRefGoogle Scholar
  7. 7.
    R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature, 258, 703 (1975).CrossRefGoogle Scholar
  8. 8.
    T. C. Simonton, R. Roy, S. Komarneni and E. Breval, J. Mater. Res., 1, 667 (1986).CrossRefGoogle Scholar
  9. 9.
    R. A. Roy and R. Roy, Mater. Res. Bull., 19, 169 (1984). D. Hoffmann, S. Komarneni and R. Roy, J. Mater. Sci. Lett., 3, 439 (1984). D. Hoffmann, R. Roy and S. Komarneni, Mater. Lett., 2, 245 (1984). J. Am. Ceram. Soc., 67, 468 (1984).CrossRefGoogle Scholar
  10. 10.
    G. Ervin, Ph.D. Thesis, Pennsylvania State College (1949).Google Scholar
  11. 11.
    A. Kijowski, S. Komarneni and R. Roy, Effect of seeding on the crystallization of cordierite. In 90th Fall Meeting of Am. Ceram. Soc., Abstracts (1988).Google Scholar
  12. 12.
    D. M. Roy and R. Roy, Nat. Res. Council Pubi. 456, 82 (1956).Google Scholar
  13. 13.
    R. Roy, Y. Suwa and S. Komarneni, Nucleation and epitaxial growth in diphasic crystalline + amorphous gels. In Science of Ceramic Chemical Processing, ed. L. L. Hench and R. R. Ulrich, Wiley, New York, 1986, Vol. 2, Chap. 27.Google Scholar
  14. 14.
    F. A. Hummel, Foote Prints, 20, 3 (1948).Google Scholar
  15. 15.
    R. Roy and E. F. Osborn, J. Am. Chem. Soc., 71, 2086 (1949).CrossRefGoogle Scholar
  16. 16.
    L. G. van Uitert, H. M. O’Bryan, M. E. Lines, H. J. Guggenheim and G. Zydzik, Mater Res Bull 12, 261 (1977).CrossRefGoogle Scholar
  17. 17.
    D. K. Agrawal, V. S. Stubican and Y. Mehrotra, J Am Ceram Soc, 69, 261 (1977).Google Scholar
  18. 18.
    J. Alomo and R. Roy, J Mater Sci, 21, 444 (1986).CrossRefGoogle Scholar
  19. 19.
    R. Roy, D. K. Agrawal and R. A. Roy, United States Patent 4,675,302 (June 23, 1987 ).Google Scholar
  20. 20.
    M. J. Ruthner, Preparation and sintering characteristics of MgO, MgO- Cr2O3 and MgO-Al2O3, Third Round Table Meeting, Intl. Team for Studying Sintering, Herceg-Novi, Yugoslavia, 3 – 8 Sept. 1973.Google Scholar
  21. 21.
    D. M. Roy, R. R. Neurgaonkar, T. P. O’Holleran and R. Roy, Ceramic Bull., 56, 1023 (1977).Google Scholar
  22. 22.
    A. Kumar and R. Roy, RESA—A wholly new process for fine oxide powder preparation, J. Mater. Res. 3, 1373 (1988).CrossRefGoogle Scholar
  23. 23.
    B.V Derjaguin et al., Filamentary diamonds crystal. J. Cryst. Growth, 2, 380 (1968)CrossRefGoogle Scholar
  24. 24.
    M. Alam, T. Debroy and R. Roy, Diamond formation in air by the Fedoseev-Derjaguin laser process, Carbon, 27, 289 (1989).CrossRefGoogle Scholar
  25. 25.
    History of High-Tc Superconductors, Materials Research Society History Project, videotapes.Google Scholar
  26. 26.
    Journal Electric Power Research Institute; p. 23, Dec. 1987.Google Scholar

Copyright information

© Elsevier Science Publishers LTD 1990

Authors and Affiliations

  • Rustum Roy
    • 1
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUSA

Personalised recommendations