Skip to main content

Whey Proteins

  • Chapter
Food Gels

Part of the book series: Elsevier Applied Food Science Series ((EAFSS))

Abstract

Whey protein is now a significant source of functional protein for the food industry world-wide. Produced mainly as a by-product of hard-cheese and casein manufacture in Europe, North America and Australasia, thousands of tonnes of whey protein concentrate (WPC) and isolate (WPI) powders are now available from major manufacturers, who offer ranges of products that vary both in functionality profiles and protein content (25–95% protein) to meet the particular applications needs of food manufacturers. This aspect of whey protein utilization has developed rapidly over the last 10 years, out of a realization of the valuable properties of whey proteins, the availability of new fractionation technologies such as ultrafiltration and ion-exchange, and a continuing search for a better exploitation of whey than the base disposal methods of dumping, animal feeding or the manufacture of low-protein whey powders

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, G., Whey proteins. World Review of Nutrition and Dietetics, 24 (1976) 88 – 116

    Google Scholar 

  2. Evans, M. T. A. & Gordon, J. F., Whey proteins. In Applied Protein Chemistry, ed. R. A. Grant. Applied Science Publishers, London, 1980, p. 31

    Google Scholar 

  3. Swaisgood, H., Chemistry of milk proteins. In Developments in Dairy Chemistry-1, ed. P. F. Fox. Applied Science Publishers, London, 1982, p. 1

    Google Scholar 

  4. Marshall, K. R., Industrial isolation of milk proteins: whey proteins. In Developments in Dairy Chemistry—1, ed. P. F. Fox. Applied Science Publishers, London, 1982, p. 339

    Google Scholar 

  5. Morr, C. V., Functional properties of milk proteins and their use as food ingredients. In Developments in Dairy Chemistry-1, ed. P F. Fox. Applied Science Publishers, London, 1982, p. 375

    Google Scholar 

  6. de Wit, J. N., New approach to the functional characterisation of whey protein for use in food products. In Milk Proteins’84, Proceedings of the International Congress on Milk Proteins, Luxemburg, 1984, ed. T.E. Galesloot & B.J. Tinbergen. Padoc, Wageningen, 1985, p. 183

    Google Scholar 

  7. Symposium: Production and utilisation of whey and whey components. J. Dairy Sci., 67 (11) (1984) 2621 – 774

    Article  Google Scholar 

  8. Andrews, A. T., The composition, structure and origin of proteose-peptone component 5 of bovine milk. Eur. J. Biochem., 90 (1978) 59

    Article  Google Scholar 

  9. Andrews, A. T., The composition, structure and origin of proteose peptone component 8F of bovine milk. Eur. J. Biochem., 90 (1978) 67

    Article  Google Scholar 

  10. Eigei, W. N. & Keenan, T. W., Identification of protease peptone component 8-slow as a plasmin-derived fragment of bovine ß-casein. Int. J. Biochem., 10 (1979) 529

    Article  Google Scholar 

  11. Eigel, W. N., Butler, J. E, Ernstrom, C. A., Farrell, H. M. Jr, Harwalkar, V. R., Jenness, R. & Whitney, R. McL., Nomenclature of proteins of cow’s milk: fifth revision. J. Dairy Sci., 67 (1984) 1599 – 631

    Article  Google Scholar 

  12. Papiz, M. Z., Sawyer, L., Eliopoulos, E. E., North, A.C.T, Findlay, J.B.C., Sivaprasadarao, R., Jones, T.A., Newcomer, M. E. & Kraulis, P. J., The structure of ß-lactoglobulin and its similarity to plasma retinol-binding protein. Nature (London), 324 (1986) (27 Nov.) 343

    Google Scholar 

  13. Sawyer, L., One fold among many. Nature (London), 327 (1987) (26 June) 659

    Article  Google Scholar 

  14. Aschaffenburg, R. & Drewry, J., An improved method for the preparation of crystalline ß-lactoglobulin and α-lactalbumin from cow’s milk. Biochem. J., 65 (1957) 273 – 7

    Google Scholar 

  15. Townend, R., Herskovits, T. T., Timasheff, S. N. & Gorbunoff, M. J., The state of amino acid residues in ß-lactoglobulin. Arch. Biochem. Biophys., 129 (1969) 567

    Google Scholar 

  16. Timasheff, S. N., Mescanti, L., Basch, J. J. & Townend, R. J., Conformational transitions of bovine ß-lactoglobulins A, B and C. J. Biol. Chem., 241 (1966) 2496

    Google Scholar 

  17. Lyster, R. L. J., Review of the progress of dairy science, Section C. Chemistry of milk proteins. J. Dairy Res., 39 (1972) 279

    Article  Google Scholar 

  18. Brew, K., Castellino, F. J., Vanamen, T. C. & Hill, L. R., The complete amino acid sequence of α-lactalbumin. J. Biol. Chem., 245 (1970) 4570

    Google Scholar 

  19. Vanaman, T. C., Brew, K. & Hill, L. R., The disulphide bonds of bovine α-lactalbumin. J. Biol. Chem., 245 (1970) 4583

    Google Scholar 

  20. Smith, S.G., Lewis, M., Aschaffenburg, R., Fenna, R.E., Wilson, I.A., Sundaralingam, M., Stuart, D. I. & Phillips, D. C., Crystallographic analysis of the 3-dimensional structure of baboon α-lactalbumin at low resolution. Biochem. J., 242 (2) (1987) 353 – 60

    Google Scholar 

  21. Barel, A. O., Prieels, J. P., Maes, E., Loose, Y. & Leonis, J., Comparative physiochemical studies of human α-lactalbumin and human lysozyme. Biochim. Biophys. Acta, 257 (1972) 288

    Google Scholar 

  22. Robbins, R. M. & Holmes, L. G., Circular dichroism spectra of α-lactalbumin. Biochim. Biophys. Acta, 221 (1970) 234

    Google Scholar 

  23. Shukla, T. P., Chemistry and biological function of α-lactalbumin. CRC Critical Reviews in Food Technology, 3 (3) (1973) 241

    Google Scholar 

  24. Baer, A., Droz, M. & Blanc, B., Serological studies on heat induced interactions of α-lactalbumin and milk proteins. J. Dairy Res., 43 (3) (1976) 419

    Article  Google Scholar 

  25. Desmet, J., Hanssens, I. & Cauveleart, F. van, Comparison of the binding of Na+ and Ca2+ to bovine α-lactalbumin. Biochim. Biophys. Acta (Protein Structure and Molecular Enzymology), 912 (2) (1987) 211 – 19

    Article  Google Scholar 

  26. Joly, M., A Physico-chemical Approach to the Denaturation of Proteins. Academic Press, New York, 1965

    Google Scholar 

  27. Jaenicke, R., Intermolecular forces in the process of heat aggregation of globular proteins and the problem of correlation between aggregation and denaturation phenomena. J. Polymer Sci., Part C, 16 (1967) 2143 – 60

    Google Scholar 

  28. Jaenicke, R., Volume changes in the isoelectric heat aggregation of serum albumin. Eur. J. Biochem., 21 (1971) 110 – 15

    Article  Google Scholar 

  29. Gumper, S., Hegg, P. O. & Martens, M., Thermal stability of fatty acid serum albumin complexes studied by differential scanning calorimetry. Biochim. Biophys. Acta, 574 (1979) 189

    Google Scholar 

  30. Hegg, P. O., Conditions for the formation of heat induced gels of some globular food proteins. J. Food Sci., 47 (1982) 1241 – 4

    Article  Google Scholar 

  31. Lin, V. J. C. & Koonig, J. L., Raman studies of bovine serum albumin. Biopolymers, 15 (1976) 203

    Article  Google Scholar 

  32. MacRitchie, F., Effects of temperature on dissolution and precipitation of proteins and polyamino acids. J. Colloid Interface Sci., 45 (1973) 235

    Article  Google Scholar 

  33. Spector, A. A., Fatty acid binding to plasma albumin. J. Lipid Res., 16 (1975) 165

    Google Scholar 

  34. Brown, J. R., Structure of bovine serum albumin. Fed. Proc., 34 (1975) 591

    Google Scholar 

  35. Brown, J. R., Structure and evolution of serum albumin. In Albumin Structure; Biosynthesis; Function. Proc. FEBS Meeting, 50 (1977) 1

    Google Scholar 

  36. Sogami, M., Petersen, H. & Foster, J., The microheterogeneity of plasma albumins. V. Permutations in disulphide pairings as a probable source of microheterogeneity in bovine albumin. Biochemistry, 8 (1) (1969) 49

    Article  Google Scholar 

  37. Haurowitz, B., Albumins, globulins and other soluble proteins. In The Chemistry and Function of Proteins, Chap. 8, ed. F. Haurowitz. Academic Press, New York, 1963

    Google Scholar 

  38. Jones, A. & Weber, G., Partial modification of bovine serum albumin with dicarboxylic anhydrides. Physical properties of modified species. Biochemistry, 9 (24) (1970) 4729 – 35

    Article  Google Scholar 

  39. Butler, J. E., Bovine immunoglobulins, an augmented review. Veterinary Immunology and Immunopathology, 4 (1/2) (1983) 43 – 152

    Article  Google Scholar 

  40. Whitney, R. McL., Brunner, R. J., Ebner, K. E., Farrell, H. M., Josephson, R. V., Morr, C.V. & Swaisgood, H. E., Nomenclature of the proteins of cow’s milk; fourth revision. J. Dairy Sci., 59 (5) (1976) 795

    Article  Google Scholar 

  41. Evans, M. T. A., Electrodialysis and ion exchange as demineralisation methods in dairy processing. In Evaporation, Membrane Filtration, Spray Drying in Milk Powder and Cheese Production, ed. R. Hansen. North European Dairy Journal, Vanlose, Denmark, 1985, pp. 55-78

    Google Scholar 

  42. Madsen, R., Theory of membrane filtration and membrane filtration in the dairy industry. In Evaporation, Membrane Filtration, Spray Drying in Milk Powder and Cheese Production, ed. R. Hansen. North European Dairy Journal, Vanlose, Denmark, 1985, pp. 179-286

    Google Scholar 

  43. Matthews, M. E., Practical considerations in the design and operation of a commercial UF plant. N.Z. J. Dairy Sci. Technol., 15 (1980) A73

    Google Scholar 

  44. Morr, C. V., Fractionation and modification of whey protein in the US. In Trends in Whey Utilisation, Bulletin of the IDF No. 212 (1987), p. 145

    Google Scholar 

  45. Palmer, D. E., High purity protein recovery. Process Biochem., 12 (5) (1977) 24

    Google Scholar 

  46. Ayers, J. S. & Petersen, M. J., Whey protein recovery using a range of novel ion exchangers. N.Z. J. Dairy Sci. Technol., 20 (1985) 129

    Google Scholar 

  47. Ayers, J. S., Elgar, D. F. & Petersen, M. J., Whey protein recovery using Indion S, an industrial ion exchanger for proteins. N.Z. J. Dairy Sci. Technol., 21 (1986) 21

    Google Scholar 

  48. Mirabel, B., UK Patent 1 563 990 (1980

    Google Scholar 

  49. Skudder, P., Evaluation of a porous silica based ion exchange medium for the production of protein fractions from rennet and acid whey. J. Dairy Res., 52 (1985) 167 – 81

    Article  Google Scholar 

  50. Pearce, R. J., Fractionation of whey proteins. In Trends in Whey Utilisation, Bulletin of the IDF No. 212 (1987), p. 150

    Google Scholar 

  51. Maubois, J. L., Pierre, A., Fauquant, J. & Piot, M., Industrial fractionation of main whey proteins. In Trends in Whey Utilisation, Bulletin of the IDF No. 212 (1987), p. 154

    Google Scholar 

  52. Schmidt, R. H., Smith, D. E., Packard, V. S. & Morris, H. A., Compositional and selected functional properties of whey protein concentrates and lactose- hydrolysed whey protein concentrates. J. Food Protection, 49 (3) (1986) 192 – 3

    Google Scholar 

  53. Delaney, R. A. M., Compositional properties and uses of whey protein concentrates. J. Soc. Dairy Technol., 29(2) (1976) 91-101

    Article  Google Scholar 

  54. Mulvihill, D. M. & Donovan, M., Whey proteins and their thermal denaturation—a review. Irish J. Food Sci. Technol., 11 (1987) 43 – 75

    Google Scholar 

  55. Johns, J. E. M. & Ennis, B. M., The effect of the replacement of calcium with sodium ions in acid whey on the functional properties of whey protein concentrates. N.Z. J. Dairy Sci. Technol., 15 (1981) 79 – 86

    Google Scholar 

  56. Phillips, D. J. & Evans, M. T. A., Process for lowering gelling temperature of whey proteins obtained from milk. UK Patent 2 055 846B (1981

    Google Scholar 

  57. Modler, H. W. & Emmons, D. B., Properties of whey protein concentrate prepared by heating under acidic conditions. J. Dairy Sci., 60 (2) (1977) 177 – 89

    Article  Google Scholar 

  58. Modler, H. W. & Harwalkar, V. R., Whey protein concentrate prepared by heating under acidic conditions. Recovery by ultrafiltration and functional properties. Milchwissenschaft, 36 (9) (1981) 537 – 42

    Google Scholar 

  59. Donovan, M. & Mulvihill, D. M., Thermal denaturation and aggregation of whey proteins. Irish J. Food Sci. Technol., 11 (1987) 87 – 100

    Google Scholar 

  60. De Wit, J. N., Klarenbeek, G. & Adamse, M., Evaluation of functional properties of whey protein concentrates and isolates. 2. Effects of processing history and composition. Neth. Milk Dairy J., 40 (1986) 41 – 56

    Google Scholar 

  61. Fox, P. F. & Mulvihill, D. M., Milk proteins: molecular, colloidal and functional properties. J. Dairy Res., 49 (4) (1982) 679 – 93

    Article  Google Scholar 

  62. Delaney, R. A. M. & Donnelly, J. V., Functional properties of membrane filtered whey and skim milk. Maelheritende, 88 (1975) 55

    Google Scholar 

  63. De Wit, J. N., Functional properties of whey proteins in food systems. Neth. Milk Dairy J., 38 (1984) 71 – 89

    Google Scholar 

  64. De Boer, R., De Wit, J. N. & Hiddink, J., Processing of whey by means of membranes and some applications of whey protein concentrate. J. Soc. Dairy Technol., 30 (2) (1977) 112 – 20

    Article  Google Scholar 

  65. Hillier, R. M. & Cheeseman, G. C., Effect of proteose peptone on the heat gelation of whey protein isolates. J. Dairy Res., 46 (1979) 113 – 23

    Article  Google Scholar 

  66. Mulvihill, D. M. & Kinsella, J. E., Gelation characteristics of whey proteins and ß-lactoglobulin. Food Technol. (Sept. 1987) 102 – 11

    Google Scholar 

  67. Harwalkar, V. R. & Kalab, M., Thermal denaturation and aggregation of ß-lactoglobulin at pH 2–5. Effect of ionic strength and protein concentration. Milchwissenschaft, 40 (1) (1985) 31 – 4

    Google Scholar 

  68. Langley, K. R., Millard, D. & Evans, E. W., Determination of tensile strength of gels prepared from fractionated whey proteins. J. Dairy Res., 53 (1986) 285 – 92

    Article  Google Scholar 

  69. Broome, M. C., Willman, N., Roginski, H. & Hickey, M. W., The use of cheese whey protein concentrate in the manufacture of skim milk yoghurt. Aust. J. Dairy Technol., 37 (1982) 139 – 43

    Google Scholar 

  70. Greig, R. W. & Van Kan, J., Effect of whey protein concentrates on fermentation of yoghurt. Dairy Ind. Internat., 49 (10) (1984) 28 – 9

    Google Scholar 

  71. Chang, P. K., Fabricated shellfish products containing whey protein concentrate: composition and method of preparation. US Patent 4 411 917 (1983

    Google Scholar 

  72. Burgarella, J. C., Lanier, T. C. & Hamann, D. D., Effects of added egg white or whey protein concentrate in rigidity of Croaker surimi. J. Food Sci., 50 (1981) 1588 – 94

    Article  Google Scholar 

  73. Towler, C., Utilisation of whey protein products in pasta. N.Z. J. Dairy Sci. Technol., 17 (1982) 229 – 36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Bottomley, R.C., Evans, M.T.A., Parkinson, C.J. (1990). Whey Proteins. In: Harris, P. (eds) Food Gels. Elsevier Applied Food Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0755-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0755-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6825-3

  • Online ISBN: 978-94-009-0755-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics