Skip to main content

The Mechanism of Antioxidant Action in Vitro

  • Chapter
Food Antioxidants

Part of the book series: Elsevier Applied Food Science Series ((EAFSS))

Abstract

The spontaneous reaction of atmospheric oxygen with organic compounds leads to a number of degradative changes that reduce the lifetime of many products of interest to the chemical industry, especially polymers, as well as causing the deterioration of lipids in foods. The importance of oxygen in the deterioration of rubber was demonstrated over a century ago,1 and this finding led chemists to investigate the chemistry of oxidative deterioration and its inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hoffman, A.W., Changes of gutta-percha under tropical influences. J. Chem. Soc., 13 (1861) 87.

    Google Scholar 

  2. Privett, O. S. & Blank, M.L., The initial stages of autoxidation. J. Am. Oil. Chem. Soc., 39 (1962) 465–9.

    Article  Google Scholar 

  3. Heaton, F. W. & Uri, N., The aerobic oxidation of unsaturated fatty acids and their esters. J. Lipid Res., 2 (1961) 152–60.

    Google Scholar 

  4. Korycka-Dahl, M.B. & Richardson, T., Activated oxygen species and oxidation of food constituents.CRC Crit. Rev. Food Sci. Nutr., 10 (1978) 209–41.

    Article  Google Scholar 

  5. Eskin, N.A.M., Grossman, S. & Pinsky, A., Biochemistry of lipoxygenase in relation to food quality. Crit. Rev. Food Sci. Nutr., 9 (1977) 1–40.

    Google Scholar 

  6. Benson, S.W., Kinetics of pyrolysis of alkyl hydroperoxides and their O-O bond dissociation energies. J. Chem. Phys., 40 (1964) 1007–13.

    Article  Google Scholar 

  7. Hiatt, R. & Irwin, K.C., Homolytic decompositions of hydroperoxides. V. Thermal decompositions. J. Org. Chem., 33 (1968) 1436–41.

    Article  Google Scholar 

  8. Bateman, L. & Hughes, H., The thermal decomposition of cyclohexenyl hydroperoxide in hydrocarbon solvents. J. Chem. Soc., (1952) 4594–601.

    Google Scholar 

  9. Walling, C. & Heaton, L., Hydrogen bonding and complex formation in solutions of tert-butyl hydroperoxide. J. Am. Chem. Soc., 87 (1965) 48–51.

    Article  Google Scholar 

  10. Hiatt, R., Irwin, K.C., and Gould, C.W., Homolytic decompositions of hydroperoxides IV. Metal-catalysed decompositions. J. Org. Chem., 33 (1968) 1430–5.

    Article  Google Scholar 

  11. Hiatt, R., Mill, T. and Mayo, F.R., Homolytic decompositions of hydroperoxides I. Summary and implications for autoxidation. J. Org. Chem., 33 (1968) 1416.

    Google Scholar 

  12. Bawn, C.E.H., Free-radical reactions in solution initiated by heavy metal ions. Disc. Farad. Soc., 14 (1953) 181–99.

    Article  Google Scholar 

  13. Waters, W.A., The kinetics and mechanism of metal-catalysed autoxidation. J. Am. Oil Chem. Soc., 48 (9) (1971) 427–33.

    Article  Google Scholar 

  14. Chan, H.W-S, Prescott, F.A.A. & Swoboda, P.A.T., Thermal decomposition of individual positional isomers of methyl linoleate hydro-peroxide. J. Am. Oil Chem. Soc., 53 (1976) 572–6.

    Article  Google Scholar 

  15. Ingold, K.U., Inhibition of autoxidation. Adv. Chem. Ser., 75 (1968) 296–305.

    Article  Google Scholar 

  16. Scott, G., Developments in Polymer Stabilisation, Vol. 7, Chapter 2. Applied Science, London, 1984.

    Google Scholar 

  17. Harman, D., In Free Radicals in Biology, Vol. 5. ed. W.A. Pryor. Academic Press, New York, 1982, pp. 255–75.

    Google Scholar 

  18. Burton, G.W. & Ingold, K. U., ß-Carotene: an unusual type of lipid antioxidant. Science, 224 (1984) 569–73.

    Article  Google Scholar 

  19. Stryer, L., Biochemistry. Freeman, San Francisco, 1975, p. 72.

    Google Scholar 

  20. Ingold, K.U., Inhibition of oil oxidation by 2,6-di-t-butyl-4-substituted phenols. J. Phys. Chem., 64 (1960) 1636–42.

    Article  Google Scholar 

  21. Miller, G.J. & Quackenbush, F. W., A comparison of alkylated phenols as antioxidants for lard. J. Am. Oil Chem. Soc., 34 (1957) 249–50, 404–7.

    Article  Google Scholar 

  22. Baum, B.O. & Perun, A.L., Antioxidant efficiency versus structure. Soc. Plast. Engrs Trans., 2 (1962) 250–7.

    Google Scholar 

  23. Täufel, K., Kretzschmann, F. & Franzke, C., Fette Scifen Anstrichm., 62 (1960) 1061–7.

    Article  Google Scholar 

  24. Rosenwald, R.H. & Chenicek, J.A., Alkylhydroxyanisoles as antioxidants. J. Am. Oil Chem. Soc., 28 (1951) 185–8.

    Article  Google Scholar 

  25. Scott, G., Atmospheric Oxidation and Antioxidants. Elsevier, New York, 1965.

    Google Scholar 

  26. Mabrouk, A F. & Dugan, L.R., Kinetic investigation into glucose-, fructose- and sucrose-activated autoxidation of methyl linoleate emulsion. J. Am. Oil Chem. Soc., 38 (1961) 692–5.

    Article  Google Scholar 

  27. Cillard, J., Cillard, P. & Cormier, M., Effect of experimental factors on the prooxidant behaviour of tocopherol. J. Am. Oil Chem. Soc., 57 (1980) 255–61.

    Article  Google Scholar 

  28. Lundberg, W.O., Dockstader, W.B. and Halvorson, H.O., The kinetics of the oxidation of several antioxidants in oxidising fats. J. Am. Oil Chem. Soc., 24 (1947) 89–92.

    Article  Google Scholar 

  29. Endo, Y., Usuki, R. & Kareda, T., Antioxidant effects on chlorophyll and pheophytin on the autoxidation of oils in the dark II. J. Am. Oil Chem. Soc., 62 (9) (1985) 1387–90.

    Article  Google Scholar 

  30. Foote, C.S. & Denny, R.W., Chemistry of singlet oxygen. VII. Quenching by ß-carotene. J. Am. Chem. Soc., 90 (1968) 6233–5.

    Article  Google Scholar 

  31. Foote, C. S., Photosensitised oxidation and singlet oxygen: consequences in biological systems. In Free Radicals in Biology, Vol. II, ed. W. A. Pryor. Academic Press, New York, 1976, pp. 85–133.

    Google Scholar 

  32. Lea, C.H ., Rancidity in Edible Fats. Chemical Publishing Co. Inc., New York, 1939.

    Google Scholar 

  33. Uri, N., Metal-ion catalysis and polarity of environment in the aerobic oxidation of unsaturated fatty acids. Nature, SOBA11051603078 (1956) 1177–8.

    Google Scholar 

  34. Singer, T. P. & Edmondson, D. E., Biological reduction of molecular oxygen to hydrogen peroxide. Mol. Oxygen Biol. (1974) 315–37.

    Google Scholar 

  35. Samuel, D. & Steckel, F.,Physicochemical properties of molecular oxygen. Mol. Oxygen Biol (1974) 1–32.

    Google Scholar 

  36. Rogers, W.P. & Pont, E.G., Copper contamination in milk production and butter manufacture. Aust. J. Dairy Technol, 20 (1965) 200–5.

    Google Scholar 

  37. Pokorny, J., Major factors affecting the autoxidation of lipids. In Autoxidation of Unsaturated Lipids, ed. H. W-S Chan. Academic Press, London, 1987, pp. 141–206.

    Google Scholar 

  38. Kochi, J.K., Oxidation-reduction reactions of free radicals and metal complexes. Free Radicals, 1 (1973) 591–683.

    Google Scholar 

  39. Uri, N., Essential Fatty Acids, 4th Int. Cong. Biochem. Prob. Lipids, ed. H. M. Sinclair. Academic Press, New York, 1958, p. 30.

    Google Scholar 

  40. Pribil, R., Analytical applications of EDTA and Related Compounds. Pergamon Press, Oxford, 1972.

    Google Scholar 

  41. Mertens, W. G., Swindells, C. E. & Teasdale, B. F., Trace metals and the flavour stability of margarine. J. Am. Oil Chem. Soc., 48 (10) (1971) 544–6.

    Article  Google Scholar 

  42. Melniek, D., US Patent 2, 983, 615, 1961.

    Google Scholar 

  43. Täufel, K. and Linow, F., Fette Scifen Anstrichm., 65 (1963) 795–9.

    Article  Google Scholar 

  44. Watts, B.M., Polyphosphates as synergistic antioxidants. J. Am. Oil Chem. Soc., 27 (1950) 48–51.

    Article  Google Scholar 

  45. Cort, W.M., Antioxidant activity of tocopherols, ascorbyl palmitate, and ascorbic acid, and their mode of action. J. Am. Oil Chem. Soc., 51 (7) (1974) 321–5.

    Article  Google Scholar 

  46. Reinton, R. & Rogstad, A., Antioxidant activity of tocopherols and ascorbic acid. J. Food Sci., 46 (1981) 970–1, 973.

    Article  Google Scholar 

  47. Packer, J.E., Slater, T.F. & Willson, R.L., Direct observation of a free radical interaction between vitamin E and vitamin C. Nature, 278 (1979) 737.

    Google Scholar 

  48. Kellogg, E.W. III & Fridovich, I., Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol Chem., 250 (1975) 8812–5.

    Google Scholar 

  49. Korycka-Dahl, M.B. & Richardson, T., Initiation of oxidative changes in foods. J. Dairy Sci., 63 (7) (1980) 1181–98.

    Article  Google Scholar 

  50. Clements, A.H., Van den Engh, R.H., Frost, D.T. & Hoogenhout, K., Participation of singlet oxygen in photosensitised oxidation of 1,4-dienoic systems and photooxidation of soybean oil. J. Am. Oil Chem. Soc., 50 (8) (1973) 325–30.

    Article  Google Scholar 

  51. Rock, S.P., Fisher, L. & Roth, H., Methyl silicone in frying fats— antioxidant or prooxidant? J. Am. Oil Chem. Soc., 44 (1967) 102A.

    Google Scholar 

  52. Warner, K., Mounts, T. L. & Kwolek, W. F., Effects of antioxidants, methyl silicone and hydrogenation on room odor of cooking oils. J. Am. Oil Chem. Soc., 62 (10) (1985) 1483.

    Article  Google Scholar 

  53. Martin, J.B., Stabilisation of fats and oils. US Patent 2,634, 213, 1953.

    Google Scholar 

  54. Freeman, I.P., Padley, F. B., and Sheppard, W. L., Use of silicones in frying oils. J. Am. Oil Chem. Soc., 50 (1973) 101–3.

    Article  Google Scholar 

  55. Rock, S.P. & Roth, H., Factors affecting the rate of deterioration in the frying quality of fats II. J. Am. Oil Chem. Soc., 41 (1964) 531–3.

    Article  Google Scholar 

  56. Sims, R.J., Fioriti, J.A. & Kanuk, M.J., Sterol additives as polymerisation inhibitors for frying oils. J. Am. Oil Chem. Soc., 49 (1972) 298–301.

    Article  Google Scholar 

  57. Boskou, D. & Morton, I.D., Effect of plant sterols on the rate of deterioration of heated oils. J. Sci. Food Agric., 27 (1976) 928–32.

    Article  Google Scholar 

  58. Gordon, M.H. & Magos, P., The effect of sterols on the oxidation of edible oils. Food Chem., 10 (1983) 141–7.

    Article  Google Scholar 

  59. Brandt, P., Hollstein, E. & Franzke, C., Pro- and antioxidative effects of phosphatides. Lebensmittel Ind., 20 (1973) 31–3.

    Google Scholar 

  60. Linow, F. & Mieth, G., Zur fettstabilisierenden Wirkung von Phosphatiden. 3. Mitt. Synergistische Wirkung ausgewählter Phosphatide. Die Nahrung, 20 (1) (1976) 19–24.

    Article  Google Scholar 

  61. Hudson, B.J.F. & Ghavami, M., Phospholipids as antioxidant synergists for tocopherols in the autoxidation of edible oils. Lebensm. Wiss. u-Technol., 17 (1984) 191–4.

    Google Scholar 

  62. Hudson, B.J.F. & Lewis, J.I., Polyhydroxy flavonoid antioxidants for edible oils. Phospholipids as synergists. Food Chem., 10 (1983) 111–20.

    Article  Google Scholar 

  63. Ishikawa, Y., Sugiyama, K. & Nakabayashi, K., Stabilisation of tocopherol by three component synergism involving tocopherol, phospholipid and amino compound. J. Am. Oil Chem. Soc., 61 (5) (1984) 950–4.

    Article  Google Scholar 

  64. Tai, P.T., Pokorny, J. & Janicek, G., Non-enzymic browning X. Kinetics of the oxidative browning of phosphatidylethanolamine. Z. Lebensm. Unters. Forsch., 156 (5) (1974) 257–62.

    Article  Google Scholar 

  65. Pokorny, J., Poskocilova, H. & Davidek, J., Effect of phospholipids on the decomposition of hydroperoxides. Nahrung, 25 (1981) K29–31.

    Article  Google Scholar 

  66. Dziedzic, S. Z., Robinson, J. L. & Hudson, B. J. F., Fate of propyl gallate and diphosphatidylethanolamine in lard during autoxidation at 120°C. J. Agric. Food Chem., 34 (1986) 1027–9.

    Article  Google Scholar 

  67. Eichner, K., Antioxidative effects of Maillard reaction intermediates. Prog. Food Nutr. Sci., 5 (1981) 441–51.

    Google Scholar 

  68. Lingnert, H. & Eriksson, C. E., Antioxidative effect of Maillard reaction products. Prog. Food Nutr. Sci., 5 (1981) 453–66.

    Google Scholar 

  69. Yamaguchi, N., Koyama, K. & Fujimaki, M., Fractionation of antioxidative activity of browning reaction products between D-xylose and glycine. Proc. Food Nutr. Sci., 5 (1981) 429–39.

    Google Scholar 

  70. Lundberg, W.O., Autoxidation and Antioxidants, Vol. 1, Interscience, New York, 1961.

    Google Scholar 

  71. Kajimoto, G. & Yoshida, H., Studies on the metal-protein complex VII. Yukagaku, 24 (1975) 297–300.

    Google Scholar 

  72. Gomyo, T. & Horikoshi, M., On the interaction of melanoidin with metal ions. Agric. Biol. Chem., 40 (1976) 33–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Gordon, M.H. (1990). The Mechanism of Antioxidant Action in Vitro . In: Hudson, B.J.F. (eds) Food Antioxidants. Elsevier Applied Food Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0753-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0753-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6824-6

  • Online ISBN: 978-94-009-0753-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics