Computer Simulation of Fluid Flow and Combustion in Reciprocating Engines

  • D. B. Spalding

Abstract

In the present context, computer simulation of IC engine combustion is the use of a digital computer to predict, from the fundamental laws of physics and chemistry, the distributions of velocity, pressure, temperature and other gas properties throughout the space above the piston, and throughout the cycle.

Keywords

Fluid Flow Computational Fluid Dynamic Combustion Chamber Mixture Fraction Gasoline Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pun, W. M. & Spalding, D. B., A procedure for predicting the velocity and temperature distributions in a confined, steady, turbulent, gaseous, diffusion flame. In XVIIU International Astronautical Congress. Pergamon Press/PWN Polish Scientific Publishers, 1968, pp. 3–21.Google Scholar
  2. 2.
    Spalding, D. B., Predicting the performance of diesel engine combustion chambers. Closing lecture at IMechE Symposium on Diesel-Engine Combustion, London. Proc. Instn Mech. Engrs 184 (Part 3J) (1969/70).Google Scholar
  3. 3.
    Patankar, S. V. & Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in parabolic flows. Int. J. Heat Mass Transfer, 15 (1972) 1787–806.MATHCrossRefGoogle Scholar
  4. 4.
    Patankar, S. V. & Spalding, D. B., The EASI program. Report, CHAM Ltd, 1974.Google Scholar
  5. 5.
    Watkins, A. P., Calculation of flow and heat transfer in the combustion chamber of a reciprocating engine. MSc thesis, Dept of Mech. Engng, Imperial College, University of London.Google Scholar
  6. 6.
    Zuber, I., Ein mathematisches Modell des Brennraums. Monographs and Memoranda no. 12. Staatliche Forschungs Institut fuer Maschinenbau, Bechovice, Czechoslovakia, 1972.Google Scholar
  7. 7.
    Markatos, N. C. & Mukerjee, T., 3-Dimensional computer analysis of flow and combustion in automotive internal combustion engines. In Mathematics and Computers in Simulation; Trans. IMACS, 23(4) (1981).Google Scholar
  8. 8.
    Amsden, A. A., Ramshaw, J. D., O’Rourke, P. J. & Dubowicz, J. K., KIVA: A computer program for two- and three-dimensional fluid flows with chemical reactions and fuel sprays. Report LA-10245-MS, Los Alamos National Laboratory, 1985.Google Scholar
  9. 9.
    Spalding, D. B., A general-purpose computer program for multidimensional one- and two-phase flow. Lehigh IMACS Conference, July 1981; Mathematics and Computers in Simulation, XIII (1981) 267–76.Google Scholar
  10. 0.
    Gosman, A. D., Tsui, Y. Y. & Watkins, A. P., Calculation of unsteady three-dimensional flow in a model motored reciprocating engine and comparison with experiment. In Proceedings of 5th International Symposium on Turbulent Shear Flows, Cornell University, New York, 1985.Google Scholar
  11. Ramos, J. I., Lectures on mathematical models of diesel engines. In Advanced Course on Computer Simulation of Fluid Flow, Heat and Mass Transfer and Combustion in Reciprocating Engines, Dubrovnik, Yugoslavia, Hemisphere Publishing, New York, 1987.Google Scholar
  12. 2.
    Bracco, F. V., Modelling of two-phase, two-dimensional unsteady combustion for internal combustion engines. In Stratified-charge Engines. Instn Mech. Engrs Conference publications 1976–11, pp. 167–187.Google Scholar
  13. 13.
    Harlow, F. H. & Amsden, A. A., Numerical calculation of almost incompressible flow. J. Comput. Phys., 3 (1968) 1.CrossRefGoogle Scholar
  14. 14.
    Chorin, A. J., Numerical solution of the Navier—Stokes equations. Maths Comput., 22 (No. 104) (1968) 745–62.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Caretto, L. S., Gosman, A. D., Patankar, S. V. & Spalding, D. B., Two calculation procedures for steady, three-dimensional flows with recirculation. In Proceedings of 3rd International Conference on Numerical Methods in Fluid Mechanics, Vol. II, 1973, 60–68.CrossRefGoogle Scholar
  16. 16.
    Spalding, D. B., Mathematical modelling of fluid mechanics, heat transfer and mass transfer processes; a lecture course. Report HTS/80/1, Dept of Mech. Engng, Imperial College, 1980.Google Scholar
  17. 17.
    Rhie, C. M. & Chow, W. L., Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J., 21(11) (1983) 1525–32.MATHCrossRefGoogle Scholar
  18. 18.
    Harlow, F. H. & Amsden, A. A., Numerical calculation of multi-phase fluid flow. J. Comput. Phys., 17(1) (1975) 19–52.MATHCrossRefGoogle Scholar
  19. 19.
    Spalding, D. B., The calculation of free-convection phenomena in gas-liquid mixtures. ICHMT Seminar, Dubrovnik. Also in Turbulent Buoyant Convection, ed. N. Afgan & D. B. Spalding, Hemisphere, Washington, DC, 1977, pp. 569–86.Google Scholar
  20. 20.
    Patankar, S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC, 1980.MATHGoogle Scholar
  21. 21.
    Minkowycz, W. J., Sparrow, E. M., Schneider, G. E. & Pletcher, R. H., Handbook of Numerical Heat Transfer. John Wiley, New York, 1988.Google Scholar
  22. 22.
    Spalding, D. B., Combustion and Mass Transfer. Pergamon Press, Oxford, 1979.Google Scholar
  23. 23.
    Spalding, D. B., Stephenson, P. L. & Taylor, R. G., A calculation procedure for the prediction of laminar flame speeds. Combustion & Flame, 17 (1971) 55–64.CrossRefGoogle Scholar
  24. 24.
    Bracco, E. V. & O’Rourke, P. J., Prog. Energy Combust. Sci. 7 (1981) 103.CrossRefGoogle Scholar
  25. 25.
    Launder, B. E. & Spalding, D. B., Mathematical Models of Turbulence, Academic Press, London and New York, 1972.MATHGoogle Scholar
  26. 26.
    Harlow, F. H. & Nakayama, P. I., Transport of turbulence energy decay rate, LA-3854, Los Alamos Sci. Lab., University of California, 1968.Google Scholar
  27. 27.
    Launder, B. E. & Spalding, D. B., The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3 (1974) 269–89.MATHCrossRefGoogle Scholar
  28. 28.
    Spalding, D. B., Mixing and chemical reaction in steady confined turbulent flames. 13th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1971, p. 649.Google Scholar
  29. 29.
    Prandtl, L., Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Z. angew Math. Mech. (ZAMM), 5(2) (1925) 136–9.MATHGoogle Scholar
  30. 30.
    Spalding, D. B., Theories of turbulent reacting flows. AIAA, Paper 79–0213 (1979).Google Scholar
  31. 31.
    Spalding, D. B., Chemical reactions in turbulent fluids. Levich 60th Birthday Conference on PhysicoChemical Hydrodynamics, Advance Publications, Vol 1, 1978, p. 521.Google Scholar
  32. 32.
    Ma, A. S. C., Sun, R. L. T. & Spalding, D. B., Application of ESCIMO to the turbulent hydrogen—air diffusion flame. 13th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1982, pp. 393–402.Google Scholar
  33. 33.
    Borghi, R. & Moreau, P., Turbulent combustion in a pre-mixed flow. Acta Astronautica, 4 (1977) 321–41.CrossRefGoogle Scholar
  34. 34.
    Dopazo, C. & O’Brien, E. E., Statistical treatment of non-isothermal chemical reactions in turbulence. Combustion Science and Technology, 13 (1976) 99–122.CrossRefGoogle Scholar
  35. 35.
    Shchelkin, K., Soviet Physics—Technical Physics. Vol. 13, p. 520.Google Scholar
  36. 36.
    Wohlenberg, W. J., Minimum depth of flame front for stable combustion…in a gaseous system at constant pressure. 4th Symposium (International) on Combustion, Williams and Wilkins, Baltimore, 1953, p. 796.Google Scholar
  37. 37.
    Howe, N. M. & Shipman, C. W., A tentative model for rates of combustion in confined turbulent flames. 10th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1965, p. 1139.Google Scholar
  38. 38.
    Bray, K. N. C. & Libby, P. A., Countergradient diffusion in premixed turbulent flames. AIAA J., 19 (1981) 205.CrossRefGoogle Scholar
  39. 39.
    Kuznetsov, V. R., Fluid Dynamics (USSR), 14 (1979) 328.MATHCrossRefGoogle Scholar
  40. 40.
    Moss, J. B., Simultaneous measurements of concentration and velocity in an open pre-mixed flame. Combust. Sci. Technol., 22 (1980) 115–29.CrossRefGoogle Scholar
  41. 41.
    Shepherd, I. G. & Moss, J. B., Measurements of conditioned velocities in a turbulent pre-mixed flame. AIAA paper 81–0181, 1981.Google Scholar
  42. 42.
    Phillips, H., Towards a two-fluid model for flame acceleration in explosions. H & SE Explosion and Rame Laboratory, Buxton, England, 1983. Submitted to the 9th International Colloquium on Dynamics of Explosions and Reactive Systems.Google Scholar
  43. 43.
    Spalding, D. B., Chemical reaction in turbulent fluids. J. Phys. Chem. Hydrodyn., 4(4) (1983) 323–36.Google Scholar
  44. 44.
    Spalding, D. B., Towards a two-fluid model of turbulent combustion in gases with special reference to the spark-ignition engine. In Conference on Combustion in Engineering, Vol. 1, Instn Mech. Engrs, London, 1983, pp. 135–42.Google Scholar
  45. 45.
    Spalding, D. B. & Wu, J. Z., Numerical studies of propagating flames exhibiting the Landau and Rayleigh—Taylor instabilities. J. Phys. Chem. Hydrodyn., 7(5/6) (1986) 353–84.Google Scholar
  46. 46.
    Ilegbusi, J. O. & Spalding, D. B., Application of a two-fluid model of turbulence to turbulent flows in conduits and free shear-layers. J. Phys. Chem. Hydrodyn. 9(1/2) (1987) 161–81.Google Scholar
  47. 47.
    Malin, M. R. & Spalding, D. B., Flow and heat transfer in two-dimensional turbulent wall jets and plumes. J. Phys. Chem. Hydrodyn., 9(1/2) (1987) 237–74.Google Scholar
  48. 48.
    Malin, M. R. & Spalding, D. B., A two-fluid model of turbulence and its application to heated plane jets and wakes. PCH J., 5 (1984) 339–61.Google Scholar
  49. 49.
    Spalding, D. B., Computer simulation of turbulent combustion in reciprocating engines. In Proceedings of 2nd International PHOENICS User Conference, CHAM Ltd, London, 1989.Google Scholar
  50. 50.
    Spalding, D. B., The PHOENICS equations, CHAM/TR/99 Doc Rev 02, CHAM Ltd, 1989.Google Scholar
  51. 51.
    Andrews, M. J., Turbulent mixing by Rayleigh—Taylor instability. PhD thesis, Imperial College, University of London, CFDU Report CFD/86/10, 1986.Google Scholar
  52. 52.
    Wu, J. Z., The application of the two-fluid model of turbulence to ducted flames. In Proceedings of PHOENICS User Conference, 1987.Google Scholar
  53. 53.
    Sweeney, M. E. G., Swann, G. B. G., Kenny, R. G. & Blair, G. P., Computational fluid dynamics applied to two-stroke-engine scavenging. SAE paper 851519, 1985.CrossRefGoogle Scholar
  54. 54.
    Yamada, T., Inoue, T., Yoshimatsu, A., Hiramatsu, T. & Konishi, M., In-cylinder gas motion of multivalve engine—three-dimensional numerical simulation. SAE paper 860465, 1986.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • D. B. Spalding
    • 1
  1. 1.CHAM LtdLondonUK

Personalised recommendations