Hydrothermal crystal growth of perovskite-type fluorides

  • Shigeyuki Sōmiya
  • Shin-Ichi Hirano
  • Masahiro Yoshimura
  • Kazumichi Yanagisawa


Single crystals of perovskite-type fluorides were grown from potassium fluoride and di-valent metal chloride solutions by a hydrothermal method under a temperature gradient, at maximum temperature 600° C and pressure 98 MPa. Single-crystal cubes of KMnF3, KFeF3, KCoF3 and KZnF3, of cube edge sizes ranging from 0.2 to 2.0 mm, were grown. Crystals of KNiF3 grew in rectangular prisms and those of KCdF3 in anhedral form. Single crystals of KCuF3 were grown in pure water from co-precipitated KCuF3 powder. KMgF3 crystals were not grown by this method.


Hydrothermal Method Hydrothermal Reaction Cupric Oxide Rectangular Prism Dissolution Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hirakawa, K. Hirakawa and T. Hashimoto, J. Phys. Soc. Japan 15 (1960) 2063.CrossRefGoogle Scholar
  2. 2.
    K. Knox, Acta Cryst. 14 (1961) 583.CrossRefGoogle Scholar
  3. 3.
    Y. Suemune and H. Ikawa, J. Phys. Soc. Japan 19 (1964) 1686.CrossRefGoogle Scholar
  4. 4.
    W. W. Holloway and M. Kestigian, J. Chem. Phys. 45 (1966) 639.CrossRefGoogle Scholar
  5. 5.
    K. Gesi, J. D. Axe and G. Shirane, Phys. Rev. B5 (1972) 1033.Google Scholar
  6. 6.
    E. S. Svensson, W. J. L. Buyers, T. M. Holden, R. A. Cowley and R. W. H. Stevenson, Canadian J. Phys. 47 (1969) 1983.CrossRefGoogle Scholar
  7. 7.
    R. H. Rose, J. E. Rhoads and L. E. Halliburton, Phys. Rev. B14 (1976) 3583.Google Scholar
  8. 8.
    H. Takeuchi, K. Horai and M. Arakawa, J. Phys. Soc. Japan 46 (1979) 18.CrossRefGoogle Scholar
  9. 9.
    R. Leckebusch, J. Crystal Growth 23 (1974) 74.CrossRefGoogle Scholar
  10. 10.
    B. J. Garrard, B. M. Wanklyn and S. H. Smith, J. Crystal Growth 22 (1974) 169.CrossRefGoogle Scholar
  11. 11.
    B. M. Wanklyn, J. Crystal Growth 5 (1969) 279.CrossRefGoogle Scholar
  12. 12.
    M. Safa, B. K. Tanner, B. J. Garrard and B. M. Wanklyn, J. Crystal Growth 39 (1977) 243.CrossRefGoogle Scholar
  13. 13.
    R. Leckebusch, Fortshr. Miner. 55 (1977) 9.Google Scholar
  14. 14.
    D. Skrzypek, P. Jakubowski, A. Ratuszna and A. Chezkowski, J. Crystal Growth 48 (1980) 475.CrossRefGoogle Scholar
  15. 15.
    S. Hirano, K. Yanagisawa and S. Sōmiya, J. Crystal Growth 48 (1980) 475., to be published.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • Shigeyuki Sōmiya
    • 1
  • Shin-Ichi Hirano
    • 1
  • Masahiro Yoshimura
    • 1
  • Kazumichi Yanagisawa
    • 1
  1. 1.Laboratory for Hydrothermal Syntheses, Research Laboratory of Engineering Materials and Department of Material Science and EngineeringTokyo Institute of TechnologyMidori, YokohamaJapan

Personalised recommendations