Pore Growth and Shrinkage During Sintering

  • O. J. Whittemore
  • J. A. Varela


Since the driving force for sintering is the reduction of free surface area, the initial loss of surface should be considered the initial sintering stage. Surface loss is accompanied by changes in pore size, usually pore growth and sometimes accompanied by shrinkage. Pore growth has been observed in sintering Al2O3, amorphous SiO2- Al2O3, Fe2O3, MgO, SnO2, TiO2 and ZnO by mercury porosimetry and by nitrogen adsorption. Water vapor in the sintering atmosphere has greatly accelerated pore growth. Some explanations are: particle size distributions, rearrangement, varying coalescence, surface diffusion, evaporation/condensation, and phase transformation.


Pore Size Distribution Surface Diffusion Water Vapor Pressure Mercury Porosimetry Pore Size Distribution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Exner, H. E., Principles of single phase sintering. Rev. Powder Met. Phys. Ceram. 1(1-4) (1979) 7–251.Google Scholar
  2. 2,.
    Varela, J. A. & Whittemore, O. J., Structural rearrangement during the sintering of MgO. J. Am. Ceram. Soc., 66(1) (1983) 77–82.CrossRefGoogle Scholar
  3. 3.
    Washburn, E. W., Note on a method of determining the distribution of pore sizes in a porous material. Proc. Nat. Acad. Sci., 7 (1921) 115–16.CrossRefGoogle Scholar
  4. 4.
    Ritter, H. L. & Drake, L. C., Pore-size distribution in porous materials. Ind. Engng. Chem. Anal. Ed., 17(12) (1945) 782–86.CrossRefGoogle Scholar
  5. 5.
    A Special Issue Devoted to Mercury Porosity, J. Van Brakel (ed.), Powder Technol., 29(1) (1981).Google Scholar
  6. 6.
    Rootare, H. M. & Nyce, A. C., The use of porosimetry in the measurement of pore size distribution in porous materials. Int. J. Powder Met., 7(1) (1971) 3–11.Google Scholar
  7. 7.
    Lowell, S. & Shields, J. E., Hysteresis in mercury porosimetry. Mater. Sci. Res., 15 (1983) 133–46.Google Scholar
  8. 8.
    Lowell, J. & Shields, J. E., Powder Surface Area and Porosity. Chapman and Hall, New York, 1984.CrossRefGoogle Scholar
  9. 9.
    Whittemore, O. J. & Varela, J. A, Pore distributions and pore growth during the initial stages of sintering. Sintering Processes, ed. G.C. Kuczynski. Plenum Press, New York, 1980, pp. 51–60.Google Scholar
  10. 10.
    Frevel, L. K. & Kressley, L. J., Modifications in mercury porosimetry. Anal. Chem., 35 (1963) 1492–1502.CrossRefGoogle Scholar
  11. 11.
    Sipe, J. J. Pore Growth during the Initial Stages of Sintering. Ph.D. Thesis, University of Washington, 1971.Google Scholar
  12. 12, Mikijelj, B., Varela, J. A. & Whittemore, O. J., Comparison of surface areas determined by N2 adsorption (BET) and mercury porosimetry. Annals of the 7th Brazilian Congress of Engng. and Science of Materials, University of Federal Santa Catarina, Florianopolis, Brazil, 1986.Google Scholar
  13. 13.
    Rootare, H. M. & Prenzlow, C. F., Surface areas from mercury porosimeter measurements. J. Phys. Chem., 71 (1967) 2733–6.CrossRefGoogle Scholar
  14. 14.
    Whittemore, O. J. & Halsey, G. D., Pore structure characterization by mercury porosimetry. Mater. Sci. Res., 15 (1983) 147–57.Google Scholar
  15. 15.
    Joss, H. D., Initial Stage Sintering of Tin Oxide. M.S. Thesis, University of Washington, 1975.Google Scholar
  16. 16.
    Brunauer, S., Emmett, P. H. & Teller, E., The adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60 (1938) 309–19.CrossRefGoogle Scholar
  17. 17.
    Barrett, E. P., Joyner, L. G. & Halenda, P. O., The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms. J. Am. Chem. Soc., 73 (1951) 373–80.CrossRefGoogle Scholar
  18. 18.
    Stone, R. J., Recrystallization and Grain Growth in Initial Stage Sintering of Magnesium Oxide. Ph.D. Thesis, University of Washington, 1987.Google Scholar
  19. 19.
    Whittemore, O. J., Comparison of Pore Size Distribution with Permeability of Refractories. Foundation in Refractories Education report, 1974.Google Scholar
  20. 20.
    Watson, A., May, J. O. & Butterworth, B., Studies of pore size distribution. Trans. Brit. Ceram. Soc., 56 (2) (1957) 37–52.Google Scholar
  21. 21.
    Han, C., Aksay, L. A. & Whittemore, O. J., Characterization of microstructural evolution by mercury porosimetry. Adv. Mater. Char. II, Plenum Publishing Corp., 1985, pp. 339-47.Google Scholar
  22. 22.
    Mikijelj, B., Whittemore, O. J. & Varela, J. A., Variables influencing the sintering of MgO. Proc. 6th World Round Table Conference on Sintering, Yugoslavia, 1985, Plenum Press New York, pp. 109-17.Google Scholar
  23. 23.
    Thompson, V. S. & Whittemore, O. J., Structural changes on reheating plasmasprayed alumina. Am. Ceram. Soc. Bull., 47(7) (1968) 637–41Google Scholar
  24. 24.
    Whittemore, O. J. & Sullivan, D. A., Pore changes on reheating of plasma-sprayed zircon. J. Am. Ceram. Soc., 56(6) (1973) 347.CrossRefGoogle Scholar
  25. 25.
    Eloff, P. C. & Lenel, F. V., The effects of mechanical constraints upon the early stages of sintering. In Fundamentals of Sintering, ed. H.H. Hausner, Plenum Press, New York, 1971, pp. 291–302.Google Scholar
  26. 26.
    Shumaker, C. B. & Fulrath, R. M., Initial stages of sintering of copper and nickel. In Sintering and Related Phenomena, ed. G.C. Kuczynski. Plenum Press, New York, 1973, pp. 191–9.Google Scholar
  27. 27.
    Whittemore, O. J., Varela, J. A. & Tosaya, E. S., Pore growth during the sintering of ZnO. In Ceramic Powders, ed. P. Vincenzini, Elsevier, Amsterdam, 1983, pp. 849–59.Google Scholar
  28. 28.
    Whittemore, O. J. & Powell, S. L., Effects of oxygen pressure and water vapor on sintering of ZnO. In Sintering and Heterogeneous Catalysis, ed. G.C. Kuczynski, A.E. Miller & G.A. Sargent. Plenum Press, New York, 1984.Google Scholar
  29. 29.
    Sipe, J. J. & Whittemore, O. J., Preparation of samples for sintering of submicron particles by transmission electron microscopy. J. Am. Ceram. Soc., 53(9) (1970) 525.CrossRefGoogle Scholar
  30. 30.
    Idzikowski, S., The growth of crystalline grains in α-ferric oxide. Trans. Brit. Ceram. Soc., 76(4) (1977) 74–81.Google Scholar
  31. 31.
    Ball, M. J., Variables Affecting Liquid Phase Sintering in SnO2 + CuO. M.S. Thesis, University of Washington, 1985.Google Scholar
  32. 32.
    Varela, J. A. & Whittemore, O. J., Grain and pore growth during the sintering of MgO at different water vapor partial pressures. In Sintering—Theory and Practice, ed. D. Kolar, S. Pejovnik and M. Ristic. Elsevier, Amsterdam, 1982, pp. 439–45.Google Scholar
  33. 33.
    Whittemore, O. J. & Varela, J. A., Initial sintering of MgO in several water vapor pressures. Adv. Ceram. 10 (1985) 583–91.Google Scholar
  34. 34.
    Longo, E., Varela, J. A., Santilli, C. V. & Whittemore, O. J., Model of interactions between magnesia and water. Adv. Ceram., 10 (1985) 592–600.Google Scholar
  35. 35.
    Longo, E., Varela, J. A., Senapeschi, A. & Whittemore, O. J., Mechanisms of water interaction with an MgO surface. Langmuir, 1 (1985) 456–61.CrossRefGoogle Scholar
  36. 36.
    Hamano, K, Asano, K, Akiyama, J. & Nakagawa, Z., Effects of water vapor on sintering of magnesia. Rep. Res. Lab. Engng Materials, Tokyo Institute of Technology, Vol. 4, 1979, p. 59.Google Scholar
  37. 37.
    Liu, J., Sintering and Interaction with Water Vapor of CaO at High Temperature. M. S. Thesis, University of Washington, 1986.Google Scholar
  38. 38.
    Mikijelj, B. & Whittemore, O. J., Grain cuboidization during sintering of MgO-MgCl2(l%). Am. Ceram. Soc. Bull., 66(5) (1987) 809–12.Google Scholar
  39. 39.
    Varela, J. A., Whittemore, O. J. & Ball, M. J., Structural evolution during the sintering of SnO2 and SnO2-2 mole % CuO. Proc. 6th World Round Table Conference on Sintering, Yugoslavia, 1985, Plenum Press, New York, pp. 259-68.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • O. J. Whittemore
    • 1
  • J. A. Varela
    • 2
  1. 1.University of WashingtonUSA
  2. 2.Universidade Estadual PaulistaBrazil

Personalised recommendations